CONTENTS

249

COUPLING

ETP BUSHINGS

ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS

INVERTERS

LINEAR SHAFT DRIVES

TORQUE LIMITERS

ROSTA

≫ 248	ELECTROMAGNETIC CLUTCHES & BRAKES	≫ 334	SPRING-ACTUATED BRAKES
250	Electromagnetic Clutch & Brake Models	336	Product Lineup
252	Selection Guide	340	BXW-L/H/S
253	Select by Product Characteristics	342	BXW-R
254	Applications	344	BXR-LE
		346	BXR
» 256	ELECTROMAGNETIC-ACTUATED MICRO	350	BXL
	CLUTCHES & BRAKES	354	BXH
258	Product Lineup	358	BXL-N
262	102	360	Selection Procedures
266	СҮТ		
268	112	>> 368	ELECTROMAGNETIC TOOTH CLUTCHES
>> 270	FLECTROMAGNETIC-ACTUATED	370	546
22 210			
272		≫ 374	BRAKE MOTORS
276	101	376	BMS
278	CS .	378	ВММ
280	111		
282	CSZ	>> 382	POWER SUPPLIES
283	BSZ	384	Product Lineup
		386	BES
≫ 284	ELECTROMAGNETIC CLUTCH AND BRAKE UNITS	388	BEH
286	Product Lineup	390	BEW
292	125	392	BEW-S
296	121- 🗌 -20G	394	BEW-W
298	126	396	BEW-FH
302	CBW	398	BEM
306	СМЖ	400	BEM-T
308	121- 🗆 -10G	X (12	MIKI DI II I EV Holo Drilling Standards
310	122	013	MINIPULLET HOLE-DHILLING Standards
≫ 312	ELECTROMAGNETIC-ACTUATED CLUTCHES		
	& BRAKES TECHNICAL DOCUMENT		

140 0

Electromagnetic Clutch & Brake Models

>> A selection guide for electromagnetic clutches and brakes begins on the next page.

MIKIPULLEY 251

Selection Guide

Miki Pulley divides its electromagnetic clutches & brakes into several major categories: electromagnetic-actuated clutches & brakes, spring-actuated clutches & brakes, electromagnetic tooth clutches, brake motors, and power supplies.

When selecting a product, have information handy on your application, required torque, performance, load properties, drive source and the like, and then use the diagram on the page at right as your guide. Selection details are described in the selection procedures given for each series.

List of Products

Select by Product Characteristics

Applications

Product model 111 Employed device Spe

Special-purpose Vehicles

The Electromagneticactuated brake 111 model is used in the elevating device for the auxiliary leg.

BXR model as the holding brake for drive motor. Slim design helps save space.

255

Large BXW as the pitch drive device of a wind turbine generator.

Product model BXW Large Size (Custom Product) Employed device Wind Turbine Generator

Product model BXR-LE Employed device Vertically Articulated Robots

The BXR-LE models owes its ultra-thin profile to a dedicated controller. Mounted on the output shaft, it is ideal for applications where space is limited. Its dedicated controller also saves energy.

Spring-actuated brake BXH model for electric forklift. Compact, high torque design.

ELECTROMAGNETIC **CLUTCHES & BRAKES**

SERIES

ELECTROMAGNETIC-ACTUATED MICRO **CLUTCHES & BRAKES** ELECTROMAGNETIC-ACTUATED **CLUTCHES & BRAKES** ELECTROMAGNETIC **CLUTCH & BRAKE** UNITS SPRING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

BRAKE MOTORS

pplication Printing machinery, bookbinding machinery, food machinery, wrapping machinery, medical machinery

Induction Motors with Integrated Brakes

Brake motors incorporate an internal electromagnetic-actuated brake or spring-actuated brake without changing the dimensions of the induction motor. A compact power supply for the brake is built into the terminal box, so the brake motor can be simply connected and used. Choose from either base-mounted or flange-mounted types.

Same dimensions as induction motor

Since the brake is incorporated without changing the dimensions of the induction motor, mounting is easy.

Long service life

The large frictional surface area provides a long service life.

Built-in power supply

A small power supply is included in the product and handling is easy.

Quiet running (BMS models)

The rotating part (disc) is completely integrated into the motor shaft, so operation is quiet.

Manual release (BMS models)

The braking/holding state can be manually released using a release lever.

Stable rapid braking (BMM models)

Torque is transmitted by a constant-load spring, enabling stable and rapid braking.

BMS Construction

BMS Operating Principles

These brakes are spring actuated type brakes. When the power is turned on, the stator is magnetized simultaneous with the motor, and the generated attraction force pulls the armature to the stator, overcoming the pressure of the torque spring. An air gap between the disc and armature is created at that time, the brake is fully released, and the motor shaft rotates. When the current is shut off, the magnetic attraction force of the stator is extinguished, the armature is pushed back by the force of the torque spring, braking force is applied to the disc, and the motor shaft rapidly stops.

BMM Construction

BMM Operating Principles

These brakes are electromagnetic actuated type brakes. When current flows to the coil, the stator is magnetized and the armature is pulled in. Frictional force working between the lining and armature then generates the braking torque of the brake. When the current is shut off, the armature is pulled back by the ring-shaped metal disc spring located between the armature and hub, and the lining and armature are instantly released.

DRAP	LC
ELEC	TROMAGNETIC
T001	TH CLUTCHES

SERIES

ELECTROMAGNETIC-

CLUTCHES & BRAKES

FI FCTROMAGNETIC

FI FCTROMAGNETIC

CLUTCH & BRAKE UNITS

SPRING-ACTUATED

ACTUATED **CLUTCHES & BRAKES**

ACTUATED MICRO

BRAKE MOTORS

POWER SUPPLIES

MODELS	
BMS	
	•••
ВММ	

BMS Models Spring-actuated Brake Motors

Specifications

	Mo	otor				E	Brake				Rotating	All	Tatal		Operating time	2	
Model	Fra	Out 4	_7		Coil (at	t 20°C)		res	Airg	gap	part of	braking	braking	Armature	Coastdo	wn time	Mass
Model	ıme No.	tput[kW] ⊢poles	[N-m]	Voltage [V]	Current [A]	Resistance [Ω]	Wattage [W]	Heat istance class	Control value [mm]	Limit value [mm]	inertia J [kg·m²]	energy rate Pba ℓ [W]	energy ET [J]	pull-in time ta [s]	Simultaneous off [s]	DC off separately [s]	s [kg]
BMS-024-NHBN	62	0.2	2	DC00	0.20	440	10	P	0.15~	0.40	0.0×10^{-3}	10	2 5 × 107	0.04	0.1	0.09	7.5
BMS-024-NHFN	05	0.2	2	DC90	0.20	440	10	D	0.25	0.40	0.0 × 10 -	10	3.3 × 10	0.04	0.1	0.08	8.5
BMS-044-NHB	71	0.4	4	DCOO	0.20	224	25	Р	0.15~	0.40	1 5 × 10 -3	26.2	7.0 × 107	0.05	0.1	0.00	10
BMS-044-NHF	/1	0.4	4	DC90	0.28	524	25	D	0.25	0.40	1.5 × 10 3	20.2	7.0 × 10 ⁷	0.05	0.1	0.08	11
BMS-074-HPB	00	0.75	0	DCOO	0.22	270	20	Р	0.20~	0.50	4 2 × 10-3	20.4	12 5 × 107	0.05	0.14	0.00	16.5
BMS-074-HPF	80	0.75	0	DC90	0.55	270	50	D	0.30	0.50	4.3 × 10	29.4	12.5 × 10'	0.05	0.14	0.09	19
BMS-154-HPB	00	1.5	15	DCOO	0.24	261	21	Р	0.20~	0.60	0.1 × 10-3	45.0	20.0 × 107	0.11	0.15	0.00	23
BMS-154-HPF	90	1.5	15	DC90	0.34	201	31	В	0.30	0.60	8.1 × 10 ⁻³	45.8	20.0 × 10 ⁷	0.11	0.15	0.09	26

* The induction motors are fully sealed external fan motors that conform to the JIS C4210 standard (for 0.2 kW and 0.4 kW models) or the JIS C 4213 standard (for 0.75 kW models or higher). (made by Hitachi Industrial Equipment Systems) * The power supplies for the motors are 3-phase, 200 V AC at 50 Hz, or 200/220 V AC at 60 Hz.

* See P.381 for the allowable braking frequency of brake motors. The specific frequency varies with load conditions, so confirm it in your selection calculations.

Dimensions

Base-mounted

Madal											Dimen	sions o	f part								
Model	L	R	Α	В	D	KL	Н	Р	с	F	Е	Ν	М	G	Z	S	w	U	Т	Q	v
BMS-024-NHBN	215	103	112	79	130	115	128	134	63	40	50	100	130	3.2	7×21	11 h6	-	1	-	23	_
BMS-044-NHB	244	120	124	87	145	141	143.5	150	71	45	56	115	140	3.2	7 imes 20	14 j6	5	3	5	30	$\rm M5{\times}0.8$, length: 18
BMS-074-HPB	290.5	140	150.5	97	163	148	161.5	168	80	50	62.5	125	160	3.2	10 imes 25	19 j6	6	3.5	6	40	M6 $ imes$ 1, length: 20
BMS-154-HPB	329	168.5	160.5	114.5	182	144	178	188	90	62.5	70	155	170	10	10	24 j6	8	4	7	50	M6 \times 1, length: 20

Flange-mounted

Madal									Din	nensions	of part							
Model	L	LR	LL	D	KL	LC	Y	LB	LA	LE	LG	LZ	S	W	U	т	Q	V
BMS-024-NHFN	241	23	218	130	115	160	70	110	130	3.5	8	10	11 h6	-	1	-	23	-
BMS-044-NHF	265	30	235	145	134.5	160	79	110	130	3.5	10	10	14 j6	5	3	5	30	M5 imes 0.8, length: 18
BMS-074-HPF	305	40	265	163	142	200	88	130	165	3.5	12	12	19 j6	6	3.5	6	40	M6 $ imes$ 1, length: 20
BMS-154-HPF	349	50	299	176	144	200	98	130	165	3.5	12	12	24 j6	8	4	7	50	M6 $ imes$ 1, length: 20

Unit [mm]

List of Accessories

Brake motors come with the components listed at right.

When mounting a V pulley or the like on a brake motor output shaft, the V pulley or the like can be mounted simply on the motor shaft by concurrently using a motor shaft end face tap and the accessories listed at right.

For size 024, the motor output shaft has a flat face, so the shaft end face cannot be tapped and the accessories listed at right are not provided.

0	р	ti	0	n	S

Made to Order

Products with Motor Terminal Box Mounted in Reverse

Option symbol: G

The location where the brake motor is installed may make it impossible to mount the motor's terminal box in the standard location in some cases. In such cases, the mounting dimensions of the G types can be considered. Use the dimensions drawing to check the positions of the terminal boxes on G type motors.

How to Place an Order

Base-mounted

					Unit [mm]
Si	ze	024	044	074	154
Tightening collars: 1	φ 6.5 × φ 35 × 3.2t	-	0	0	0
Commente altra d	M5 imes 70	-	0		
SCREW STOCKS: 1	M6 × 100	-		0	0
Heverenel nute 1	M5	-	0		
nexagorial nuts: 1	M6	-		0	0

Products with BEW2-2H Brake Rectifiers

By using a brake motor with an inverter or the like, the motor can be fitted with a power supply that shuts off DC separately (BEW2-2H)

Option symbol: 2H

when fast response is needed.

ETP BUSHINGS ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS LINEAR SHAFT DRIVES TORQUE LIMITERS ROSTA

SERIES

	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES											
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES											
	ELECTROMAGNETIC CLUTCH & BRAKE UNITS											
SI Bi	SPRING-ACTUATED BRAKE											
ELECTROMAGNETIC												

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS BMS

вмм

To download CAD data or product catalogs:

www.mikipulley.co.jp

Web code

C024

BMM Models Electromagnetic-actuated Brake Motors

Specifications

	Mo	tor				Br	ake				Rotating	Allowahla	Total	Operati	ing time	
Madal		Out 4	_ 7		Coil (a	t 20°C)		res	Air	gap	part	braking	braking	Armature	Armature	Mass
Model	Frame No.	put [kW] -poles	rque T N-m]	Voltage [V]	Current [A]	Resistance [Ω]	Wattage [W]	Heat istance class	Control value [mm]	Limit value [mm]	inertia J [kg·m²]	energy rate Pbaℓ [W]	energy ET[J]	pull-in time ta [s]	release time tar [s]	[kg]
BMM-024-NHBN	62	0.2	25	DC190	0.06	2056	11	Р	0.10~	0.20	0.0 × 10-3	11	E 0 × 107	0.015	0.015	7
BMM-024-NHFN	05	0.2	2.5	DC180	0.06	2950	11	D	0.20	0.50	0.9 × 10	11	5.0 × 10'	0.015	0.015	8
BMM-044-NHB	71	0.4	-	DC100	0.07	2450	12.0		0.10~	0.25	2 4 × 10 - 2	26.2	7.0 \ 107	0.020	0.020	9
BMM-044-NHF	/1	0.4	5	DC180	0.07	2458	12.6	В	0.20	0.35	2.4 × 10 ⁻³	26.2	7.0 × 10 ⁷	0.030	0.030	10
BMM-074-HPB		0.75	10	D.C100	0.000				0.15~	0.45	20110		17.0	0.040		14.5
BMM-074-HPF	80	0.75	10	DC180	0.089	2039	16	В	0.25	0.45	3.8 × 10 ⁻³	32.7	17.0×10^{7}	0.040	0.040	16.5
BMM-154-HPB		4.5	20	DC100	0.422		22.4		0.15~	0.70	0.5.4.4.0.3	45.0	25.0.1.1.07	0.070	0.070	22
BMM-154-HPF	90	1.5	20	DC180	0.123	1466	22.1	В	0.25	0.70	9.5 × 10 ⁻³	45.8	25.0×10^{7}	0.060	0.060	25
BMM-224-HPB									0.20~							32
BMM-224-HPF	100	2.2	30	DC180	0.167	1080	30	В	0.30	1.00	15.2 × 10 ⁻³	58.9	50.0×10^{7}	0.070	0.070	37
BMM-374-HPB									0.20~							42
BMM-374-HPF	112	3.7	50	DC180	0.17	1059	30.6	в	0.30	1.10	22.6×10^{-3}	/3.6	75.0×10^{7}	0.070	0.080	47

* The induction motors are fully sealed external fan motors that conform to the JIS C4210 standard (for 0.2 kW and 0.4 kW models) or the JIS C 4213 standard (for 0.75 kW models or higher). (made by Hitachi Industrial Equipment Systems)

The power supplies for the motors are 3-phase, 200 V AC at 50 Hz, or 200/220 V AC at 60 Hz.
 See P.381 for the allowable braking frequency of brake motors. The specific frequency varies with load conditions, so confirm it in your selection calculations.

Dimensions

Base-mounted

Madal										DI	nensio	is of pa	art							
Model	L	R	Α	В	D	KL	н	с	F	E	Ν	М	G	Z	S	W	U	т	Q	v
BMM-024-NHBN	215	103	112	80	130	115	128	63	40	50	100	130	3.2	7 × 21	11 h6	-	1	-	23	-
BMM-044-NHB	235.5	120	115.5	87	145	131	143.5	71	45	56	115	140	3.2	7×20	14 j6	5	3	5	30	M5 imes 0.8, length: 18
BMM-074-HPB	280.5	140	140.5	97	163	138.5	161.5	80	50	62.5	125	160	3.2	10 imes 25	19 _{j6}	6	3.5	6	40	M6 \times 1, length: 20
BMM-154-HPB	321	168.5	152.5	114.5	182	144	178	90	62.5	70	155	170	10	10	24 j6	8	4	7	50	M6 $ imes$ 1, length: 20
BMM-224-HPB	368.5	193	175.5	129	198	151	197.5	100	70	80	175	195	12.5	12	28 j6	8	4	7	60	M6 \times 1, length: 20
BMM-374-HPB	397	200	197	136	225	164	219.5	112	70	95	175	224	14	12	28 j6	8	4	7	60	M6 $ imes$ 1, length: 20

Flange-mounted

Unit [mm]

Madal									Dimensi	ons of pa	rt						
Model	L	LR	LL	D	KL	LC	LB	LA	LE	LG	LZ	S	W	U	т	Q	v
BMM-024-NHFN	241	23	218	130	115	160	110	130	3.5	8	10	11 h6	-	1	-	23	-
BMM-044-NHF	256.5	30	226.5	145	124.5	160	110	130	3.5	10	10	14 j6	5	3	5	30	M5 $ imes$ 0.8, length: 18
BMM-074-HPF	295	40	255	163	132	200	130	165	3.5	12	12	19 j6	6	3.5	6	40	M6 $ imes$ 1, length: 20
BMM-154-HPF	341	50	291	176	144	200	130	165	3.5	12	12	24 j6	8	4	7	50	M6 $ imes$ 1, length: 20
BMM-224-HPF	388.5	60	328.5	195	151	250	180	215	4.0	16	14.5	28 j6	8	4	7	60	M6 $ imes$ 1, length: 20
BMM-374-HPF	422	60	362	215	164	250	180	215	4.0	16	14.5	28 j6	8	4	7	60	M6 $ imes$ 1, length: 20

ETP BUSHINGS

FTIC

AKES

List of Accessories

Brake motors come with the components listed at right.

When mounting a V pulley or the like on a brake motor output shaft, the V pulley or the like can be mounted simply on the motor shaft by concurrently using a motor shaft end face tap and the accessories listed at right.

For size 024, the motor output shaft has a flat face, so the shaft end face cannot be tapped and the accessories listed at right are not provided.

Options

Made to Order

Products with Motor Terminal Box Mounted in Reverse

Option symbol: G

The location where the brake motor is installed may make it impossible to mount the motor's terminal box in the standard location in some cases. In such cases, the mounting dimensions of the G types can be considered.

Use the dimensions drawing to check the positions of the terminal boxes on G type motors.

How to Place an Order

Base-mounted

						Un	it [mm]
Si	ze	024	044	074	154	224	374
Tightening collars: 1	φ 6.5 × φ 35 × 3.2t	-	0	0	0	0	0
Scrow stocks, 1	M5 imes 70	-	0				
SCIEW SLUCKS: I	M6 imes 100	-		0	0	0	0
Hevenenel nute 1	M5	-	0				
nexagonal nuts: 1	M6	-		0	0	0	0

Products with High Motor Output, 5.5 kW to 11 kW

554: 5.5 kW, 4-pole 754: 7.5 kW, 4-pole

1104: 11 kW, 4-pole

We also support motors with high motor output (5.5 kW to 11 kW).

Motor output/number of poles

Consult Miki Pulley for details.

BMM-

				ELECTROMAGN
0	0	0	0	CLUTCHES & BR
				SPEED CHANG
0	0	0	0	& REDUCERS
0	0	0	0	INVENIENS
				LINEAR SHAFT D
				TOROUFLIMIT

SERIES

ECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES						
IC-ACTUATED CLUT	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES						
CHES AND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS						
SI B	PRING-ACTUATED RAKE						
EI T	ELECTROMAGNETIC TOOTH CLUTCHES						
B	BRAKE MOTORS						
P	OWER SUPPLIES						
P	OWER SUPPLIES						
P	OWER SUPPLIES						

 Flange-mounted

 0.2kW
 : BMM-024-NHFN-_______Option symbols

 0.4kW
 : BMM-044-NHF

 0.75kW
 : BMM-074-HPF

 1.5kW
 : BMM-154-HPF

 2.2kW
 : BMM-224-HPF

 3.7kW
 : BMM-374-HPF

MODELS

RMM

		B	3		N	1	1	5	5																							
•	•	•		•		•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

To download CAD data or product catalogs	:

BMS/BMM Models

Selection

Study the following items, in order, to determine the final size and type.

and (5).

Confirm the torque using Eqs. (1) and (2).

Provisionally select the braking time based

Confirm the energy amount using Eqs. (4)

Confirm the number of braking operations

on calculated torque values.

on calculated torque values.

using Eqs. (6) and (7).

- · Operating condition settings Set the application, torque, number of operations, etc.
- Consideration of torque • Provisional size and type selection Provisionally select the size and type based
- Consideration of braking time
- Consideration of amount of energy
- Consideration of number of braking operations
- · Determine size and type

Consideration of Torque

- TM: Rated torque of motor [N•m]
- P: Motor output [kW]
- n: Rated rotation speed of motor [min-1]

$\mathbf{T}_{\mathbf{B}} = \mathbf{K} \cdot \mathbf{T}_{\mathbf{M}} \left[\mathbf{N} \cdot \mathbf{m} \right]$

- TB: Braking torque [N•m]
- K: Safety factor (1.5 to 2.0)

Consideration of Braking Time

The braking time can be found for brakes using the following equation.

$$t_{ab} = \frac{J \cdot n}{9.55 \cdot (T \pm T \ell)} [s] \cdots (3)$$

tab: Braking time [s]

- J: Moment of inertia of brake shaft [kg•m²]
- n: Motor rotation speed [min⁻¹]
- T: Rated torque of brake [N•m]
- Tℓ: Load torque [N•m]

(The sign of T ℓ is positive when the load works in the direction that assists braking and negative when it works in the direction that opposes it.)

The time required from excitation of the brake coil to stopping of the load on BMM models is the braking time tab found with the preceding equation plus the armature pull-in time.

The time required from cutting off the power supply of a BMS model brake motor to stopping of the load is the braking time tab found with the above equation plus the armature release time.

When brakes are used for long periods of time, they wear, air gaps grow, and it becomes impossible to pull in the armature even when the coil is excited. If re-adjustment becomes necessary, adjust the air gap as described in the maintenance and inspection section of the operating manual.

Consideration of Amount of Energy

The braking energy rate can be found for brakes using the following equation.

P: Braking energy rate [W]

S: Frequency of braking (braking operations/min)

Set a frequency that results in a value P obtained in the above equation that is no greater than the allowable braking energy rate $\mathsf{P}_{\mathsf{ba}\,\ell}$.

Consideration of Number of Braking Operations

Use the following equation to find the number of operations before readjustment of the air gap of the brake.

$$E_{b} = \frac{J \cdot n^{2}}{182} \cdot \frac{T}{(T \pm T \ell)} [J]^{\dots(6)}$$

Eb: Braking energy of one braking operation [J]

L: Number of operations before readjustment [braking operations] ET: Total braking energy [J]

ETP BUSHINGS

ELECTROMAGNETIC

CLUTCHES & BRAKES

Items Checked for Design Purposes

Precautions for Handling

What is the best way to ensure that the design allows brake motors used in machinery and equipment to perform and function adequately? We describe here approaches to design that we feel are useful in improving machinery reliability. Consult the catalog of the motor manufacturer for information on connecting motors to machinery using V pulleys or the like.

- Design in a reasonable space on the fan cover side to allow for cooling, maintenance and inspections.
- Operating temperature range: -10°C to 40°C . Contact Miki Pulley if you will use the product outside this range.
- If you are using this brake motor in a winch, lift, or the like, also use a brake of a different mechanism to prevent dangerous situations. Also, if you are using a standard shutoff circuit in an elevating winch or the like, there will be a θ load during the braking delay time and an electromotive force will occur in the motor part that will prevent the brake from engaging. For that reason, be sure to use a DC shutoff or separate shutoff circuit.
- If you are mounting a phase-advancing capacitor, consult Miki Pulley.
- Brake motors have consumable components such as linings, and thus have a finite service life. Please keep spares available. Also note that if the start frequency of the brake motor exceeds the allowed value, motor parts may burn or the brake lining may be subject to abnormal wear or damage. Check that the start frequency is staying within the allowed value. Also be aware of the capacitance of contacts for DC shutoff when you are inching at a frequency that exceeds the allowable start frequency.

Allowable start frequency of brake motor

Models	Motor output [kW]	Frequ [star	Moment of inertia of load		
		40%ED	60%ED	J [kg∙m²]	
	0.2	500	400	0.00125	
PMC	0.4	900	845	0.00128	
БМЭ	0.75	460	430	0.0028	
	1.5	370	290	0.0045	
	0.2	450	360	0.00125	
	0.4	900	845	0.00128	
PMM	0.75	460	430	0.0028	
ВММ	1.5	370	290	0.0045	
	2.2	180	145	0.010	
	3.7	180	145	0.015	

- * These values are for 4 poles and a frequency of 50 Hz using the moment of inertia J of the load from the above table as the condition. For 60 Hz, use frequencies of about 70% of the above values.
 * Frequency is a total value for the motor part and brake together. Their values as stand-
- alones are different.
- %ED is the percentage duty cycle during repeated operation.
 * The table's example of moment of inertia J of the load is virtually the same as the moment of inertia J of the motor part.

* The approximate temperature of the outer surface of the motor is 80° C to 90° C (for an ambient temperature of 40° C).

- If using an inverter or reduced-voltage starting, connect the brake or brake power supply to the power supply side of the inverter or reduced-voltage starter.
- If the wiring for the brake circuit is in the same conduit as the power lines, be sure to shield it.
- · When inserting a capacitor for improving the power factor into the brake motor circuit, be sure to use a separate shutoff circuit.
- Grounding terminals are provided in or on the side of the terminal box or at the bottom of the frame. Be sure to do the grounding work. Mobile or movable machinery is covered by labor safety regulations as well. Be sure to ground it with large-gauge grounding wires to prevent accidents from shocks.
- · Keep the voltage imbalance rate to 1% or less. Also keep the maximum current value for each phase to 105% or less of the nameplate current value when a voltage imbalance occurs.
- · Always mount the cover on the terminal box after connections are made
- Brake torque may vary somewhat. Break-in operation (40 to 60 brakings) is particularly advisable at initial use.
- If power goes out, be sure to turn the power switch off. Accidents can occur if the electricity comes back on unexpectedly.
- · Before starting a BMS model, always check that the release lever is in the non-operating position before starting machinery operation.

Wiring

BMS

A power supply with built-in relays (BEW2-2HR) is incorporated into BMS models, so BMS models generally have a responsiveness close to that of separate DC shutoff, and are adequate for use. By concurrently using an inverter or the like, the motor can be fitted with a power supply that shuts off DC separately (BEW2-2H) when even faster response is needed. This is supported as an option. Please specify it in advance.

BEW2-2HR	Brake power supply for building into relays for BMS (built
	into terminal box)
MgSw:	Electromagnetic switch
M:	Motor
B:	Brake

The power supply, motor terminal block, and brake are connected in advance, so the unit can be used by wiring only the U, V, and W leads of the motor.

BEW2-2H: Separate shutoff power supply for BMS

(Specify in advance when ordering a brake motor.)

BMM

M٠ B٠

(BEW2-2F is connected in advance.)

Motor Brake

Precautions for Use

Inspect the following items periodically.

- Is the device operating properly?
- · Has water or oil penetrated the brake part?
- · Has tightening of the mounting screws of all parts been completed?
- During periodic inspections, remove the motor fan cover and use compressed air to blow out wear debris created by friction to eliminate it or pull-in it up with a dust collector.
- · Check whether the air gap is within its service life limit. If it is at the limit value, adjust it to the prescribed air gap stated in the operating manual
- If the limit air gap has been exceeded, BMS models are particularly prone to the brake becoming unable to release due to malfunctioning armature pull-in, which can lead to problems such as motors burning.

MODELS

BMS	
••••••	• •
ВММ	

LI	NEAR SHAFT DRIVES
	DRQUE LIMITERS
	DSTA
SER	IES
ELECT	ELECTROMAGNETIC-

	ACTUATED MICRO CLUTCHES & BRAKES
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
CHES AND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
SI Bi	PRING-ACTUATED RAKE
FI	FCTROMAGNETIC

TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES