CONTENTS

249

COUPLING

ETP BUSHINGS

ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS

INVERTERS

LINEAR SHAFT DRIVES

TORQUE LIMITERS

ROSTA

≫ 248	ELECTROMAGNETIC CLUTCHES & BRAKES	≫ 334	SPRING-ACTUATED BRAKES
250	Electromagnetic Clutch & Brake Models	336	Product Lineup
252	Selection Guide	340	BXW-L/H/S
253	Select by Product Characteristics	342	BXW-R
254	Applications	344	BXR-LE
		346	BXR
» 256	ELECTROMAGNETIC-ACTUATED MICRO	350	BXL
	CLUTCHES & BRAKES	354	BXH
258	Product Lineup	358	BXL-N
262	102	360	Selection Procedures
266	СҮТ		
268	112	>> 368	ELECTROMAGNETIC TOOTH CLUTCHES
>> 270	FLECTROMAGNETIC-ACTUATED	370	546
22 210			
272		≫ 374	BRAKE MOTORS
276	101	376	BMS
278	CS .	378	ВММ
280	111		
282	CSZ	>> 382	POWER SUPPLIES
283	BSZ	384	Product Lineup
		386	BES
≫ 284	ELECTROMAGNETIC CLUTCH AND BRAKE UNITS	388	BEH
286	Product Lineup	390	BEW
292	125	392	BEW-S
296	121- 🗆 -20G	394	BEW-W
298	126	396	BEW-FH
302	CBW	398	BEM
306	СМЖ	400	BEM-T
308	121- 🗆 -10G	X (12	MIKI DI II I EV Holo Drilling Standards
310	122	013	MINIPULLET HOLE-DHILLING Standards
≫ 312	ELECTROMAGNETIC-ACTUATED CLUTCHES		
	& BRAKES TECHNICAL DOCUMENT		

140 0

Electromagnetic Clutch & Brake Models

>> A selection guide for electromagnetic clutches and brakes begins on the next page.

MIKIPULLEY 251

Selection Guide

Miki Pulley divides its electromagnetic clutches & brakes into several major categories: electromagnetic-actuated clutches & brakes, spring-actuated clutches & brakes, electromagnetic tooth clutches, brake motors, and power supplies.

When selecting a product, have information handy on your application, required torque, performance, load properties, drive source and the like, and then use the diagram on the page at right as your guide. Selection details are described in the selection procedures given for each series.

List of Products

Select by Product Characteristics

Applications

Product model 111 Employed device Spe

Special-purpose Vehicles

The Electromagneticactuated brake 111 model is used in the elevating device for the auxiliary leg.

BXR model as the holding brake for drive motor. Slim design helps save space.

255

Large BXW as the pitch drive device of a wind turbine generator.

Product model BXW Large Size (Custom Product) Employed device Wind Turbine Generator

Product model BXR-LE Employed device Vertically Articulated Robots

The BXR-LE models owes its ultra-thin profile to a dedicated controller. Mounted on the output shaft, it is ideal for applications where space is limited. Its dedicated controller also saves energy.

Spring-actuated brake BXH model for electric forklift. Compact, high torque design.

ELECTROMAGNETIC **CLUTCHES & BRAKES**

SERIES

ELECTROMAGNETIC-ACTUATED MICRO **CLUTCHES & BRAKES** ELECTROMAGNETIC-ACTUATED **CLUTCHES & BRAKES** ELECTROMAGNETIC **CLUTCH & BRAKE** UNITS SPRING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

POWER SUPPLIES

Power Supplies to Get the Best Performance from Electromagnetic Clutches and Brakes

Compatible with AC 100, 200, and 400 V input power supplies. Outputs DC 24, 45, 90, and 180 V specifications for electromagnetic clutches and brakes. Broadly divided into power supplies for electromagnetic-actuated devices, which primarily require high-speed and ultra-high-speed control, and rectified power supplies, ^s which are used by spring-actuated brakes and the like. A broad selection of power supplies are available.

Madal /Tura	Applicable clutches and brakes		Input voltage		Output voltage			Function					
Model/Type	Electromagnetic- actuated	Tooth	Spring-actuated	100V	200V	400V	24V	45V	90V	180V	Overexcitation	Reverse excitation	Weak excitation
BES	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc		
BEH	\bigcirc	\bigcirc		\bigcirc	\bigcirc		\bigcirc				\bigcirc	\bigcirc	

Medel /Ture	Applicable	clutches	and brakes	Input voltage		e		Output	voltage			Function		
моаец/туре	Electromagnetic- actuated	Tooth	Spring-actuated	100V	200V	400V	24V	45V	90V	180V	Overexcitation	Reverse excitation	Weak excitation	
BEW			\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc				
BEW-S			\bigcirc	O	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc				
BEW-W			\bigcirc	\bigcirc	\bigcirc	O		\bigcirc	\bigcirc	\bigcirc				
BEW-FH			\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	
BEM			\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc				
BEM-T			\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc				

Product Lineup

BES For ordinary high-speed control

All-around types suitable for the full range of electromagnetic clutches and brakes

- THILL
 - Built-in overexcitation function

 Can operate at high frequency and high precision.

 Zero standby power

 When used with one of our spring-actuated brakes, power consumption can be reduced by over 70%.
 - Light and compact All terminals are contactless.
 - Compatible with international standards UL listed.
- Applicable clutches and brakes
- Electromagnetic-actuated clutches and brakes Tooth clutches Spring-actuated brake
- AC100V/200V

Output voltage DC24V/45V/90V

BEH For ultra-high-speed control

Top-of-the-line ultra-high-speed control, high-precision types with built-in overexcitation/reverse excitation functions

Quiet design

There is no excitation noise while operating.

Combination control is easy

Operations that frequently switch clutches and brakes, such as inching, can be performed using only a single input signal.

An array of operating modes Compatible with a diverse range of applications.

Auto-tuning function

Easy to set for the optimum operating conditions. Causes of problems can also be easily identified using the alarm displays.

Applicable clutches and brakes Electromagnetic-actuated

clutches and brakes Tooth clutches

AC100V/200V

Output voltage DC24V

Basic power supply device model for electromagnetic clutch and brake control

Diverse array of specifications Power supplies are available

Power supplies are available with a variety of specifications, including half-wave rectified and full-wave rectified.

Terminal block type

These are of the terminal block type, which allows easy connection, with a DC switching terminal.

Applicable clutches and brakes

AC100V/200V/400V

Output voltage DC45V/90V/180V

BEW-SCompact, light

Power supplies for ordinary control of spring-actuated brakes

Half-wave rectified

Compact, light models with selected functions.

Terminal block type

These are types with terminal blocks that make connection easy. They are simple power supplies that are set on only the input side and output side.

Applicable clutches and brakes Spring-actuated brake

Input voltage AC100V/200V/400V

Output voltage DC45V/90V/180V

385

BES Models For Ordinary High-speed Control

Specifi	Specifications					
Model	BES-20- 🗆 -1	BES-40- 🗆 -1	BES-20- 🗆	BES-40- 🗆		
Input voltage	$AC100V \pm 10$	0% 50/60Hz	$AC200V \pm 10$	0% 50/60Hz		
Output current	2.0A	4.0A	2.0A	4.0A		
Voltage control system		PWM control				
Constant excitation voltage	Adjusted fo	Adjusted for each model and size at the time of shipment				
Overexcitation voltage	DC 90 V (with AC 1	Full-wave 00 V input)	DC 180 V (with AC 2	DC 180 V Full-wave (with AC 200 V input)		
Overexcitation time	Adjusted fo	or each model and	l size at the time o	of shipment		
Protective functions		Input side Quic	k-acting fuse (5A)			
Insulating resistance	DC 500 V With	Megger 100 M Ω	(between termina	I and main body)		
Dielectric strength voltage	AC 1000 V 5	50 Hz 1 min. (bet	ween terminal an	d main body)		
Usage environment	-10 to +	-50°C /10 to 90%R	H (with no conde	nsation)		
Mass	0.3kg	0.7kg	0.3kg	0.7kg		
* The voltage that is output is not insulated from the power supply, so shocks can result if touched.						

		-	
lermina	is and	Filncti	ons
	unu	i uncu	0115

Terminal symbol	Terminal name	Function description
1-2	Power supply input terminal	Connector for a commercial power supply
3-4	Output terminal	Connector for an electromagnetic clutch or brake
5-6	Control terminal 1	Output is controlled by opening and closing between terminals using a relay or the like.
	Ground terminal	External ground terminal (third class ground or more)
S1-S2	Control terminal 2	Output is controlled by turning the DC 24 V on and off (30 mA, smoothing power supply)

4

З

Structure

	ى م	(43)
(112)	102	ти

-045

Dimensions

DIN rail mounting plate (optional)

Table of Power Supply/Size Correspondence 20 MIKI PULLEY electromagnetic-actuated clutch/brake size 02 025 03 04 05 06 08 12 16 25 10 Nominal power supply output current 20 40 Power supply size Excitation voltage For 24 V 05 10 20 25 16 MIKI PULLEY electromagnetic tooth clutch sizes 23 Nominal power supply output current 20 40 Power supply size Excitation voltage For 24 V 51 52 53 MIKI PULLEY spring-actuated brake size 01 02 03 08 10 12 20 25 Nominal power supply output current 20 Excitation voltage 45/90 V 62 63 61 Power supply size Excitation voltage For 24 V 71 72 73

* The exciting voltages shown in the table above are nominal. Actual output voltages may differ depending on the control method, etc.

* The constant excitation voltage for the 45/90 V excitation voltages of spring-actuated brakes is the DC 45 V specification for an input of AC 100 V and the DC 90 V specification for an input of AC 200 V.

How to Place an Order

BES-20-10-1 DIN

Output current 20:2 A 40:4 A Refer to the power supply size compatibility table Input voltage 1: 100 V AC – Blank: 200 V AC

Mounting method DIN: Mounting by DIN mounting rail Blank: Direct mounting "The DIN mounting rail mounting option can only be set for BES-20.

Options (Noise Reduction Set)

Noise can be reduced if you also order, using the following model number, a noise filter (one) and ferrite cores (two).

BES-20-EMC

Characteristics

Operating Response

All circuits have been made contactless, and response from signal input to output to the electromagnetic-actuated clutch or brake is fast and stable.

Energy Saving

Standby power is "zero." Absolutely no electricity is wastefully consumed.

By combining this power supply with a MIKI PULLEY spring-actuated brake, the electricity consumption and heat generation of the springactuated brake is reduced by more than 70%, saving energy.

Noise During Operation

BES models use a quiet design, but electromagnetic clutches and brakes may produce excitation noise when operating under some mounting conditions. This noise is not abnormal and is not cause for concern.

Two Types of Control Systems

You can operate under either PLC control (which uses voltage control via programmable controllers or the like) or contactor control (which controls using relays and the like).

In the case of contactor control, however, a power controller for controlling the power supply line must be used.

Supply Voltage Fluctuations and Output Voltage

BES model power supplies are designed to operate reliably even when supply voltage fluctuates. Characteristically, however, their output voltage will rise or fall along with rises and falls of supply voltage. To fulfill electromagnetic clutch/brake performance, supply voltage fluctuations should be kept within a range of \pm 10%.

Precautions for Use

Connection Prohibited — Circuit Protector

BES models incorporate circuit protectors, so there is no need to connect circuit protectors to the output side (between 3 and 4). Also, since voltage is controlled using PWM, the actual voltage output is the same level as the input voltage. This means that connecting the varistor that comes with 24 V-specification clutches and brakes or the like may result in explosion of the varistor or damage to the power supply. Never connect such devices.

Protective Functions

BES models contain fuses on the input side. When a fuse engages, the likely cause is a malfunction on the output side.

- Short on output side
- Ground fault on output side

 Malfunction on output side (electromagnetic-actuated clutch/brake) Thoroughly verify that there are no malfunctions on the output side before resuming operation.

How to Check Output Voltage Values

If you are checking the output voltage with a voltage meter, tester or the like, check the value with a load such as an electromagnetic clutch or brake connected to the output side.

If nothing is connected, it shows a value close to the supply voltage.

Wiring Methods and Timing Charts

Wiring 1 (PLC Control)

Wiring 2 (Contactor Control)

1111 ۲ Л 1 8 8 CLUCH BRAKE 8 6 (

Time Chart

ETP BUSHINGS

ELECTROMAGNETIC **CLUTCHES & BRAKES**

SERIES

	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES			
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES			
	ELECTROMAGNETIC CLUTCH & BRAKE UNITS			
SPRING-ACTUATED BRAKE				
ELECTROMAGNETIC				

TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

1-2 Power supply input	7/////	
5-6 Contactor ^{Close} control ^{Open}		
S1-S2 Voltage 24VDC control 0V		(ULT)
3-4 Clutches & voltage brakes output		2 dO)
branco output	Overexcitation time	

MODELS BES BEH BEW **BFW-S** BEW-W BEW-FH BEM BEM-T

To download CAD data or product catalogs:

C026

Web code

BEH Models For Ultra-high-speed Control

Specifications

Мо	del	BEH-10G	BEH-20G	BEH-20G-1			
		$\rm AC200V \pm 10\%$	$\rm AC200V \pm 10\%$	$\rm AC100V \pm 10\%$			
Input V	ottage	Sir	ngle phase, 50/60	Hz			
	Overexcitation voltage	Initial valu	e 100 V, 0 to 250	V variable			
.	Constant excitation voltage	Initial value 24 V, 0 to 250 V variable					
Output voltage	Reverse excitation voltage	¹ Initial value 100 V, 0 to 250 V variable					
	Voltage control system		PWM control				
Output	current	2A	4A	4A			
Applicab	le clutch/	02~16 02~32					
brak	e size	MIKI PULLEY electromagnetic-actuated clutches and brakes Rated voltage DC 24 V					
Protective functions		Undervoltage protection, overvoltage protection, overcurrent protection/detection, break detection, element overheating protection, input-side fuse (20 A					
Usage env	vironment	-10 - +50°C / 10 - 90%RH					
Mass		0.85kg	0.9kg	0.9kg			

Operating Settings

Terminals and Functions

Operating settings SW (SW3) Switch No.		ON (up)	OFF (down)	Settings when shipped
1	Setup/operating mode	Setup mode	Operation mode	OFF
2	Stand-alone/ interlocked mode	Stand-alone mode	Interlocked mode	OFF
3	Break/overcurrent detection	Enabled	Disabled	OFF
4	Current/voltage control	Current control	Voltage control	OFF
5	Control AUX	Enabled	Disabled	OFF
6	Jog operation	Enabled	Disabled	OFF
7	Slope operation	Enabled	Disabled	OFF
8	One-shot operation	Enabled	Disabled	OFF

Terminal symbol	Terminal name	Function description
R-S	Power supply input terminal	Connector for a commercial power supply
CL-P	Clutch output terminal	Connector for a clutch
BR-P	Brake output terminal	Connector for a brake
≟	Ground	External ground terminal (third class ground or more)
1	Power supply terminal +	Positive terminal of control power supply (shared with the internal supply's +24 V)
2	Power supply terminal -	Negative terminal of control power supply (shared with the internal supply's 0 V)
3	Control AUX	When operating switch 5 (AUX operation) is on, executes the operation of the conditions set in the table.
4	Control clutch	Turns output between P and CL on and off.
5	Control brake	Turns output between P and BR on and off.
6 • 7	Alarm output 1	A relay that operates during an alarm stop (relay output)
8	Alarm output 2	Output operates during an alarm stop (transistor output)

Structure

ETP BUSHINGS

Characteristics

Operating Response

The circuit construction is completely contactless, and response from signal input to output to the electromagnetic-actuated clutch or brake is fast and stable. The operating speed of the electromagnetic clutch or brake is also increased to the limit speed by the overexcitation and reverse excitation functions.

This is the top-of-the-line model for electromagnetic clutch/brake power supplies. It achieves ultra-high-speed control and high precision.

Noise During Operation

The BEH models are quiet power supplies.

Electromagnetic clutches and brakes normally produce howling sounds during operation. The quiet design of BEH models eliminates such sounds.

Output Control System

You can select either Stand-alone Mode, which controls stand-alone electromagnetic clutches and brakes independently, or Interlocked Mode, which is suited to combination control of electromagnetic clutches and brakes.

There is also a diverse array of other operating modes, such as current control mode and jog mode. These are compatible with a diversity of applications.

Supply Voltage Fluctuations and Output Voltage

BEH models control output voltage to be constant even with a certain amount of supply voltage fluctuation. This ensures stable output even in locations with a bad power supply environment. Variations in electromagnetic clutch/brake response disappear.

However, overly large voltage fluctuations will be sensed as abnormal voltages and set off an alarm. To ensure proper operation, keep supply voltage fluctuation to within a range of \pm 10%.

Precautions for Use

Connection Prohibited — Circuit Protector

BEH models incorporate circuit protectors, so there is no need to connect circuit protectors to the output side (between CL, P and BR). When a circuit protector is included, the alarm goes off and operation stops. Also, since voltage is controlled using PWM, the actual voltage output is the same level as the input voltage. This means that connecting the varistor that comes with 24 V-specification clutches and brakes or the like may result in explosion of the varistor or damage to the power supply. Never connect such devices.

Power Supply Protective Functions

These power supplies are equipped with a variety of protective functions.

These functions also alert the user to the cause of the alarm when the various alarms engage. Thoroughly verify that the cause of the alarm has been cleared and that there are no abnormalities before resuming operation.

How to Check Output Voltage Values

If you are checking the output voltage with a voltage meter, tester or the like, check the value with a load such as an electromagnetic clutch or brake connected to the output side.

If nothing is connected, the protective functions of break detection engage, and a value around the DC 280 V charged in the capacitor is shown, due to the characteristics of this power supply.

Applicable Ranges and Special Adjustments

These power supplies can be used as supplies for all electromagnetic coils, not just electromagnetic clutches and brakes. The conducting conditions can be altered freely by changing internal settings. Feel free to consult Miki Pulley regarding settings, operating methods, and the like.

Wiring Methods and Timing Charts

Interlocked Mode (Operating Settings SW-2 Off)

Terminal no.] Toggles between the clutch and brake using a single input signal

Stand-alone Mode (Operating Settings SW-2 On)

Terminal no. The corresponding clutch/brake operates using the signals received by the input terminals. (Clutches and brakes cannot release output at the same time.)

The priority to determine the order of importance for signals received simultaneously can be set as desired. *The factory default setting is clutch priority.

How to Place an

20.100

Input voltage specifications Blank: 200 V AC 1: 100 V AC

ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS LINEAR SHAFT DRIVES TORQUE LIMITERS ROSTA

SERIES

	FIECTROM	ELECTROMAGNETIC- ACTUATED MICRO				
MONT!		CLUTCHES & BRAKES				
CTACL I		ELECTROMAGNETIC-				
20114		ACTUATED				
101		CLUTCHES & BRAKES				
N CTIL		ELECTROMAGNETIC				
		CLUTCH & BRAKE				
CINE		UNITS				
	SPRING-ACTUATED					
	BRAKE					

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS
BES
ВЕН
BEW
BEW-S
BEW-W
BEW-FH
BEM
BEM-T

C027

Web code

ELECTROMAGNETIC CLUTCH & BRAKE UNITS

BEW Models Supplies with Terminal Blocks for Ordinary Control

Spec	ifications												
	Model		BEV	V-2G		BEW-4G		BEV	/-1R	BEV	V-2R	BEV	√-4R
	AC100V		•		•								
Input voltage	AC200V	± 10%		•		•					•		
	AC400V	50/60HZ					•						Þ
Input voltage r		ange	AC 280	V max.	ŀ	AC 480 V ma	х.	AC90 ~	~ 140V	AC180	~ 280V	AC360	~ 480V
					For both half- and full-wave		ull-wave rec	ectification					
R	ectification method			Half-v	vave rectifica	ation		Half-wave	Full-wave	Half-wave	Full-wave	Half-wave	Full-wave
	Output voltage		DC45V	DC90V	DC45V	DC90V	DC180V	DC45V	DC90V	DC90V	DC180V	DC180V	DC360V
Output current	When the amb temperature is Values in () are for a temperature of	bient 5 20°C an ambient f 60°C	DC1.0A DC1.0A (DC0.7A) (DC0.7A)		DC2 (DC1	2.0A 1.5A)	DC (DC	1.0A 0.7A)	DCC (DCC).7A).5A)			
Output Wattage	When the amb temperature is Values in () are for a temperature of	bient 5 20°C an ambient f 60°C	45W (25W)	90W (50W)	45W (25W)	90W (50W)	180W (100W)	90W (50W)	180W (100W)	90W (50W)	180W (100W)	126W (90W)	252W (180W)
	Voltage specifi Numbers in parent input voltag	cation heses are les	DC45V (AC100V)	DC90V (AC200V)	DC45V (AC100V)	DC90V (AC200V)	DC180V (AC400V)	DC45V (AC100V)	DC90V (AC100V)	DC90V (AC200V)	DC180V (AC200V)	DC180V (AC400V)	DC360V (AC400V)
		01	٠	•	•	•	٠	•	•	•	•	•	
		02	•	•	•	•	•	•	•	•	•	•	
		03	٠	•	•	•	٠	•	•	•	•	•	
		04	•	•	•	•	•	•	•	•	•	•	
		05	٠	•	•	٠	٠	٠	٠	٠	٠	•	
Size	 Applicable 	06	•	•	•	•	•	•	•	•	•	•	
setting	riangle: Applicable	08	•	•	•	•	•	•	•	•	•	•	
	depending on clutch/brake model	10	•	•	•	•	•	•	•	•	•	•	
		12		•		•	•		•	•	•	•	
		14		•		•	•		•	•	•	•	
		16		•		•	•		•	•	•	•	
		18					•		•		•	•	
		20					•				•	•	
Applied clutches/ brakes	MIKI PULLEY electro actuated clutches a Rated voltage DC 45 DC45/90/18	23 omagnetic- Ind brakes 5/90/180 V 60V		Spring	g-actuated b	brake					All		
Insulating resistance	Potwoon torminal	and hody					DC 500 V	, 100 M Ω wi	th Megger				
Dielectric strength voltage	between terminat	anu bouy	1500 V AC,	50 Hz, 1 min.	2000	V AC, 50 Hz,	1 min.		1500 V AC,	50 Hz, 1 min		2000 V AC, 5	50 Hz, 1 min.
environment	With no conden	sation						-20 - +60℃					
Maga	Mass Bar product							0.041/0					

Structure

Terminals and Functions

Model	Terminal symbol	Terminal name	Function description
	1-2	Power supply input terminal	Connector for a commercial power supply
BEW-G	2-3	Control terminal	Output is controlled by opening and closing between terminals with a relay or other contact
	3-4	Output terminal	Connector for an electromagnetic clutch or brake
	1-2	Power supply input terminal	Connector for a commercial power supply
BEW-R	2-4 Output N-R (half-		Connector for an electromagnetic clutch or brake (when half-wave rectified)
	3-4	Output terminal (full-wave)	Connector for an electromagnetic clutch or brake (when full-wave rectified)

Characteristics

Output System

Two systems are available, half-wave rectified and full-wave rectified. Half-wave rectified takes a commercial power supply as the input and generates a half-wave rectified DC voltage on the output side. These power supply devices are known for their very simple construction and low cost, but their voltage pulse is large. They are therefore prone to generating variations in operating response in electromagnetic clutches and brakes, they produce a howling noise when conducting, and they tend to generate more heat from their electromagnetic coils than full-wave rectified supplies or smoothing supplies.

When the above are to be avoided, consider changing to a full-wave rectified supply, smoothing supply, or a DC 24 V specification. Full-wave rectified power supply devices are known for having smaller voltage

Full-wave rectified power supply devices are known for having smaller voltage pulses than half-wave rectified supplies and tending to have little variation in electromagnetic clutch and brake operating response. They can thus be used not just for spring-actuated brakes but also for electromagnetic-actuated clutches and brakes.

Note that when the rated voltage of the electromagnetic coil does not match the voltage output from the power supply device, you will not be able to obtain the electromagnetic clutch/brake characteristics given in the specifications.

Precautions for Use

Circuit Protector

These power supply devices have built-in circuit protectors (varistors) on the input and output sides. There basically is no need, therefore, to install external circuit protectors.

Primary and Secondary Control Methods

Primary control, which uses on/off of the input voltage to control electromagnetic clutches/brakes, saves wiring, but makes the armature release time extremely long, so the braking time of the brake becomes long. (No surge voltage is generated.)

With secondary control (which controls terminals 2-3 with a relay or other contact), armature release time is shorter, as is the braking time of the brake, but there is more wiring and some surge voltages occur. Select primary or secondary control based on the characteristics you desire.

Wiring Methods and Timing Charts BEW-G Secondary Control (Basic Wiring) Image: Control (Control (Contro) (Contro) (Control (Control (C

BEW-G Primary Control (Wire Saving)

Terminaritio.	terminals being toggled ON/OFF.	by the input power to the 1-2
1-2 Power supply		
input terminal 2-4 Output terminal		

*Check the above before use as even though the back voltage from the coil will no longer generate when the power supply is toggled ON/OFF, the armature release time will increse.

BEW-G Secondary Control (Wire Saving)

i owci suppiy	
input terminai	
2-3	
Output terminal	
3-4 Control terminal	

BEW-R Primary Control

Terminal no. The output for the 2-4 terminals(half-wave) or 3-4 terminals(full-wave) is controlled by the input power to the 1-2 terminals being toggled ON/OFF.

Power supply	
input terminal	
Output terminal	
(half-wave) -	
Output terminal	
(full-wave) -	

*The same level of brake responsiveness can be obtained with primary side control as with secondary side control.

How to Place an

- Specifications

G: Standard R: Relay included

C028

Input voltage specifications Rated input 1: 100 V AC Rated input 2: 200 V AC Rated input 4: 400 V AC

COUPLINGS
ETP BUSHINGS
ELECTROMAGNETIC
CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA
SERIES
ELECTROMAGNETIC-

ELECTROMAGNETIC-ACTUATED MICRO CLUTCHES & BRAKES ELECTROMAGNETIC ACTUATED CLUTCHES & BRAKES ELECTROMAGNETIC CLUTCH & BRAKE UNITS SPRING-ACTUATED BRAKE ELECTROMAGNETIC

TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS
BES
BEH
BEW
BEW-S
BEW-W
BEW-FH
BEM
BEM-T

www.mikipulley.co.jp

ELECTROMAGNETIC CLUTCH & BRAKE UNITS

BEW-S Types Compact, Light Supplies with Terminal Blocks

Specifica	ations						
	Model		BEV	<i>I</i> -25		BEW-4S	
	AC100V		•		•		
	AC200V	± 10%		٠		•	
Input voltage	AC400V	30/00112					•
	Maximum input v	oltage	AC2	50V		AC510V	
F	Rectification method				Half-wave rectification		
	Output voltage		DC45V	DC90V	DC45V	DC90V	DC180V
Output current	When the ambient temper Values in () are for an temperature of (rature is 20°C ambient 60°C			DC1.0A (DC0.6A)		
Output Wattage	When the ambient temper Values in () are for an temperature of (rature is 20°C 1 ambient 60°C	45W (25W)	90W (50W)	45W (25W)	90W (50W)	180W (100W)
	Voltage specifica Numbers in parenthese voltages	ation es are input	DC45V (AC100V)	DC90V (AC200V)	DC45V (AC100V)	DC90V (AC200V)	DC180V (AC400V)
	Applicable Applicable depending on clutch/ brake model	01	•	٠	•	•	٠
		02	•	•	•	•	•
		03	•	٠	•	•	٠
		04	•	•	•	•	•
		05	•	٠	•	•	٠
Size cetting		06	•	•	•	•	•
Size setting		08	•	•	•	•	•
		10	•	•	•	•	•
		12		•		•	•
		14		•		•	•
		16		•		•	•
		18		\bigtriangleup		\bigtriangleup	•
		20		\bigtriangleup		Δ	\bigtriangleup
		25		\bigtriangleup		\bigtriangleup	\bigtriangleup
Applied clutches/brakes	MIKI PULLEY electror actuated clutches an Rated voltage DC 45/	magnetic- Id brakes /90/180 V			Spring-actuated brake		
Insulating resistance	Retween terminal a	and hody		DC	500 V, 100 M Ω with Me	jger	
Dielectric strength voltage	between terminal a	nu bouy	1000 V AC, 5	i0 Hz, 1 min.		2000 V AC, 50 Hz, 1 min.	
Usage environment	With no condens	ation			-20 ∼ +60°C		
Mass	Per product				0.021kg		

Dimensions

Structure

Terminals and functions						
Terminal symbol	Terminal name	Function description				
1-2	Power supply input terminal	Connector for a commercial power supply				
3-4	Output terminal	Connector for an electromagnetic clutch or brake				

ETP BUSHINGS

ELECTROMAGNETIC

Characteristics

Output System

BEW-2S/4S types take a commercial power supply as the input and generate a half-wave rectified DC voltage on the output side. These power supply devices are known for their very simple construction and low cost, but their voltage pulse is large. They are therefore prone to generating variations in operating response in electromagnetic clutches and brakes, they produce a howling noise when conducting, and they tend to generate more heat from their electromagnetic coils than full-wave rectified supplies or smoothing supplies.

When the above are to be avoided, consider changing to a full-wave rectified supply (BEW-R types), smoothing supply, or a DC 24 V specification.

How to Calculate Output Voltage Output voltage = Input voltage × a (a set coefficient) * a (set coefficient) = 0.45: half-wave rectification (Ex.) BEW-2S: AC100V × 0.45 = DC45V BEW-4S: AC400V × 0.45 = DC180V

Note that when the rated voltage of the electromagnetic coil does not match the output voltage calculated above, you will not be able to obtain the electromagnetic clutch/brake characteristics given in the specifications.

Precautions for Use

Circuit Protector

These power supply devices have built-in circuit protectors (varistors) on the input and output sides. There basically is no need, therefore, to install external circuit protectors.

Primary and Secondary Control Methods

These power supply devices use primary control, in which electromagnetic clutches and brakes are controlled by turning input voltage on and off, as their basic control.

This control system saves wiring, but has a longer armature release time than secondary control, extending the braking time of springactuated brakes.

This phenomenon becomes more marked the larger the electromagnetic clutch or brake is. Primary control is thus used predominantly on small spring-actuated brakes.

Also, primary control does not generate the surge voltage (counterelectromotive voltage) when the electromagnetic clutch or brake goes off that secondary control does, so it is very effective in machinery when noise must be avoided.

When secondary control is used to improve response, install relay contacts between the output terminals and electromagnetic clutches/ brakes as shown in the wiring diagram at right.

At this time, you must install discharge elements such as varistors between relay contacts or in parallel to the electromagnetic clutch/ brake.

Input voltage specifications

2: Rated input voltage of 200 V AC 4: Rated input voltage of 400 V AC

Web code

Terminal no. <<Primary side control method>> The output for the 3-4 terminals is controlled by the input power to the 1-2 terminals being toggled ON/OFF.

Secondary Control

Terminal no.. << Secondary side control method>> The brake output is controlled by the input power being input to the 1-2 terminals and the relay being toggled ON/OFF.

CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS LINEAR SHAFT DRIVES TORQUE LIMITERS ROSTA SERIES

	ELECTROMAGNETIC-				
	ACTUATED MICRO				
	CLUTCHES & BRAKES				
	ELECTROMAGNETIC-				
	ACTUATED				
	CLUTCHES & BRAKES				
	ELECTROMAGNETIC				
	CLUTCH & BRAKE				
AKES	UNITS				
SFRING-ACTUATED					
BRAKE					

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

BEW-S
BEW-W
BEW-FH
BEM
BEM-T

MODELS

BES

BEH

BEW

To download CAD data or product catalogs:

C029

ELECTROMAGNETIC CLUTCH & BRAKE UNITS

BEW-W Types Supplies with Terminal Blocks for Both Full- and Half-waves

Specifications

Specificat	Specifications							
	Model				BEW	-4W		
	AC100V	± 10% 50/60Hz						
Input voltago	AC200V							
input voltage	AC400V							
	Maximum input voltage				AC5	10V		
	Destification method			F	or both half- and fu	III-wave rectificatio	on	
	Rectification method		Half-wave	Full-wave	Half-wave	Full-wave	Half-wave	Full-wave
	Output voltage		DC45V	DC90V	DC90V	DC180V	DC180V	DC360V
Output current	When the ambient temp Values in () are for an amb of 60°C	perature is 20°C pient temperature			DC3 (DC2	8.0A 2.5A)		
Output Wattage	When the ambient temperature is 20°C Values in () are for an ambient temperature of 60°C		135W (112W)	270W (225W)	270W (225W)	540W (540W)	540W (540W)	1080W (900W)
	Voltage specification Numbers in parentheses are inpu	ication are input voltages	DC45V (AC 100 V half-wave)	DC90V (AC 100 V full-wave)	DC90V (AC 200 V half-wave)	DC180V (AC 200 V full-wave)	DC180V (AC 400 V half-wave)	DC360V (AC 400 V full-wave)
		01	•	•	•	•	•	
		02	•	•	•	•	•	
		03	٠	٠	٠	•	٠	
		04	•	•	•	•	•	
		05	•	•	•	•	•	
Size		06	•	•	•	•	•	
Settings	Applicable Applicable depending	08	٠	٠	٠	•	٠	
	on model of clutch or	10	\bigtriangleup	•	•	•	•	
	biake	12	\bigtriangleup	•	•	•	•	
		14	\bigtriangleup	•	•	•	•	
		16	\bigtriangleup	٠	٠	٠	٠	
		18	\bigtriangleup	•	•	•	•	
		20	\bigtriangleup	•	٠	•	٠	
		25	\bigtriangleup	•	•	•	•	
Applied clutches/brakes	MIKI PULLEY electroma clutches and b Rated voltage DC 4	gnetic-actuated orakes 5/90/180 V	d Spring-actuated brake					
Insulating resistance	Patrusan ta mula d	and hady			DC 500 V, 100 M	$\boldsymbol{\Omega}$ with Megger		
Dielectric strength voltage	Between terminal	and body			2200 V AC, 5	60 Hz, 1 min.		
Usage environment	With no conder	nsation			-20 ~ +60°C /	′ 10 ∼ 90%RH		
Mass	Per produ	ct			0.04	5kg		

Structure Input terminal Output terminal

- BEW-4W

Terminals and Functions

Terminal symbol	Terminal name	Function description
1 - 2	Power supply input terminal	Connector for a commercial power supply
3 - 4	Output terminal	Connector for an electromagnetic clutch or brake

ETP BUSHINGS

SERIES

ELECTROMAGNETIC-ACTUATED MICRO

CLUTCHES & BRAKES

FI FCTROMAGNETIC ACTUATED

CLUTCHES & BRAKES

ELECTROMAGNETIC

CLUTCH & BRAKE

SPRING-ACTUATED BRAKE

ELECTROMAGNETIC

TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

UNITS

ELECTROMAGNETIC **CLUTCHES & BRAKES**

Dimensions

Characteristics

For Both Half-wave Rectified and Full-wave Rectified

For BEW-4W types, you can select between half-wave rectified and fullwave rectified by changing the connections of the wiring as shown in the figure at right.

These power supply devices are high Wattage and allow a wide range of voltage inputs, from low voltage to high. As a result, a wide variety of electromagnetic clutches and brakes can be handled by a single BEW-4W power supply alone.

You can either focus on the type of brake, assuming you will rewire, or conversely, handle a variety of types of brakes with a BEW-4W power supply alone.

How to Calculate Output Voltage

Output voltage = Input voltage \times a (a set coefficient) * a (set coefficient) = 0.45: half-wave rectified/0.9:

full-wave rectified (Ex.)

Half-wave: AC200V \times 0.45 = DC90V Full-wave: $AC100V \times 0.9 = DC90V$

Note that when the rated voltage of the electromagnetic coil does not match the output voltage calculated above, you will not be able to obtain the electromagnetic clutch/brake characteristics given in the specifications.

Precautions for Use

Primary and Secondary Control Methods

These power supply devices use primary control, in which electromagnetic clutches and brakes are controlled by turning input voltage on and off, as their basic control.

This control system saves wiring, but has a longer armature release time than secondary control, extending the braking time of springactuated brakes.

This phenomenon becomes more marked the larger the electromagnetic clutch or brake is. Primary control is thus used predominantly on small spring-actuated brakes.

Also, primary control does not generate the surge voltage (counterelectromotive voltage) when the electromagnetic clutch or brake goes off that secondary control does, so it is very effective in machinery when noise must be avoided.

When secondary control is used to improve response, install relay contacts between the output terminals and electromagnetic clutches/ brakes as shown in the wiring diagram at right.

At this time, you must install discharge elements such as varistors between relay contacts or in parallel to the electromagnetic clutch/ brake.

Wiring Methods and Timing Charts

Primary Control

<< Primary side control method>> Terminal no.

The output for the 3-4 terminals is controlled by the input power to the 1-2 terminals being toggled ON/OFF.

1-2 Power supply input terminal	<i></i>
Output terminal 2-4: Half-wave — 3-4: Full-wave	

* There is no longer a surge voltage from the electromagnetic coil when power goes on or off, but armature release time is longer, so confirm this prior to use

Secondary Control

••••••				•
BEW-FH				
•••••	• • • • •	••••	•••••	•
BEM				
•••••		• • • •		•
REM-T				

BEW-W

Terminal no.

<<Secondary side control method>> The brake output is controlled by the input power being input to the 1-2 terminals and the relay being toggled ON/OFF.

input terminal	
MC (Contact a)_	
CONTROL	
Brake output -	

www.mikipulley.co.jp

Web code

ELECTROMAGNETIC CLUTCH & BRAKE UNITS

BEW-FH Types Overexcitation Supplies that Switch Between Full- and Half-wave

-				
	neci	tica	tione	2
		II C G	UIUII a	

•									
	Model		BEW-1FH		BEW-2FH		BEW-4FH		
	AC100V			•					
la sud us lás sa	AC200V)0V ± 10% 50/60Hz				•			
input voltage	AC400V							•	
	Input voltage range		AC80 -	\sim 130V	AC170	\sim 300V	AC80	\sim 480V	
	Control mothod		Overexcita	tion (full-wave recti	ified) for 0.5 sec fol	lowed by constant	excitation (half-wa	ve rectified)	
	Controt method		Overexcitation	Constant excitation	Overexcitation	Constant excitation	Overexcitation	Constant excitation	
	Output voltage		DC90V	DC45V	DC180V	DC90V	DC360V	DC180V	
Output current	When the ambient tem Values in () are for an am of 60°C	perature is 20°C bient temperature	DC1.6A Constant	(DC1.3A) excitation	DC1.6A Constant	(DC1.3A) excitation	DC1.2A Constant	(DC1.0A) excitation	
Output Wattage	When the ambient tem Values in () are for an am of 60°C	perature is 20°C bient temperature	20°C 72W (58W) rature Constant excitation		144W Constant	144W (117W) Constant excitation		216W (180W) Constant excitation	
	Purpose of use		Using overexcitation	Using weak excitation	Using overexcitation	Using weak excitation	Using overexcitation	Using weak excitation	
	Clutch/brake rated voltage		DC45V	DC90V	DC90V	DC180V	DC180V	DC360V	
		01	•	•	•	٠	•		
		02	•	•	•	•	•		
		03	•	•	•	•	•		
		04	•	•	•	•	•		
		05	•	•	•	•	•		
Size		06	•	•	•	•	•		
Settings	Applicable	08	•	•	•	•	•		
	Appricable	10	•	•	•	•	•		
		12		•	•	•	•		
		14		•	•	•	•		
		16		•	•	•	•		
		18		•	•	•	•		
		20		•	•	•	•		
		25		•	•	•	•		
Applied clutches/brakes	MIKI PULLEY electromagnetic-actuated clutches and brakes Rated voltage DC 45/90/180 V				Spring-act	uated brake			
Insulating resistance	Determined and built				DC 500 V, 100 N	$I \Omega$ with Megger			
Dielectric strength voltage	between tel mina	cana bouy			2000 V AC,	50 Hz, 1 min.			
Usage environment	With no conde	nsation			-20 ~	+60°C			
Mass	Per product				0.0	65kg			

Structure

Terminals and Functions							
Terminal symbol	Terminal name	Function description					
1-2	Power supply input terminal	Connector for a commercial power supply					
2.4	0	6 . 6					

3-4	Output terminal	Connector for an electromagnetic clutch or brake
5-6	Control terminal	Output is controlled by opening and closing between terminals with a relay or other contact

Dimensions

Characteristics

Used as Overexcitation Supplies

BEW-FH models go through about 0.5 sec of full-wave rectified output and then transition to half-wave rectified output. BEW-FH power supply devices create an overexcitation state by matching their constant excitation voltage to the rated voltage of the electromagnetic clutch/brake to obtain the following effects.

• Longer electromagnetic clutch/brake service life (about double)

• Shorter armature pull-in time (about half) to achieve high frequency operation • Reduced startup interference by combined use of a spring-actuated

brake and a motor

Also, the following effects can also be obtained by determining the specifications of the spring-actuated brake under the assumption that a BEW-FH power supply will be used.

Higher torgue

Slimmer and more compact

Used as Weak Excitation Supplies

Conversely, BEW-FH power supply devices create a weak excitation state after armature pull-in by matching their overexcitation voltage to the rated voltage of the electromagnetic clutch/brake to obtain the following effects.

- Lower electricity consumption (about 1/4)
- Lower stator (electromagnetic coil) heat production (about 1/4)
- Shorter armature release time

Precautions for Use

Circuit Protector

These power supply devices have built-in circuit protectors (varistors) on the input and output sides. There basically is no need, therefore, to install external circuit protectors.

Primary and Secondary Control Methods

Primary control, which uses on/off of the input voltage to control electromagnetic clutches/brakes (shorting terminals 5-6), saves wiring, but makes the armature release time extremely long, so the braking time of the brake becomes long. (No surge voltage is generated.)

With secondary control (which controls terminals 5-6 with a relay or other contact), armature release time is shorter, as is the braking time of the brake, but there is more wiring and some surge voltages occur. Select primary or secondary control based on the characteristics you desire.

Terminals 5-6 are part of the circuit that flows into the brake, so add voltage and current to the considerations when you select relay contacts and the like.

Wiring Methods and Timing Charts

goes on or off, but armature release time is longer, so confirm this prior to use

Secondary Control

How to Place an Order

L Input voltage specifications Rated input 1: 100 V AC Rated input 2: 200 V AC Rated input 4: 400 V AC

COUPLINGS
ETP BUSHINGS
ELECTROMAGNETIC
CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA

SERIES

ELECTROMAGNE	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES				
TIC-ACTUATED CLUT	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES				
CHES AND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS				
SPRING-ACTUATED BRAKE					
ELECTROMA CHETIC					

ELECTROMAGNETI TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS				
BES	 	 		
BEH				
BEW		 	 	
BEW-S				
BEW-W				
BEW-FH	 		 	
BEM	 	 	 	
ВЕМ-Т	 	 	 	

Web code

<<Secondary side control methods>> The output from the 3-4 terminal is controlled by the input power to the 1-2 terminal being left on and the 5-6 terminal being toggled ON/OFF. Terminal no.

ELECTROMAGNETIC CLUTCH & BRAKE UNITS

BEM Models

els Supplies with Compact Leads

Specifica	tions									
	Model		BEI	И-2Н		BEM-4H		BEN	Л-2F	
	AC100V		•		•			•		
	AC200V	± 10%		•		•			•	
Input voltage	AC400V	30/00112					•			
	Maximum input v	voltage	AC	250V		AC510V		AC250V		
	Rectification method			Ha	lf-wave rectificat	ion	Full-wave rectification			
	Output voltage		DC45V	DC90V	DC45V	DC90V	DC180V	DC90V	DC180V	
Output current	When the ambient tempo Values in () are for a temperature of	erature is 20°C n ambient 60°C	DC (DC	1.0A 0.6A)		DC1.0A (DC0.6A)		DC (DC	1.0A 0.6A)	
Output Wattage	When the ambient tempo Values in () are for a temperature of	erature is 20°C n ambient 60°C	45W (25W)	90W (50W)	45W (25W)	90W (50W)	180W (100W)	90W (50W)	180W (100W)	
	Voltage specific Numbers in parenthes voltages	ation es are input	DC45V (AC100V)	DC90V (AC200V)	DC45V (AC100V)	DC90V (AC200V)	DC180V (AC400V)	DC90V (AC100V)	DC180V (AC200V)	
		01	٠	•	٠	٠	٠	٠	٠	
		02	•	•	•	•	•	•	•	
		03	•	•	•	•	•	•	•	
		04	•	•	•	•	•	•	•	
		05	•	•	٠	•	٠	٠	•	
Size setting	● : Applicable △ : Applicable depending on clutch/brake model	06	•	•	•	•	•	•	•	
-		08	•	•	•	•	•	•	•	
		10	•	•	•	•	•	•	•	
		12		•		•	•	•	•	
		14		•		•	•	•	•	
		16		•		•	•	•	•	
		18		Δ		Δ	•	Δ	•	
		20				Δ	Δ		•	
		25		\triangle		\triangle	Δ	\bigtriangleup	•	
Applied clutches/brakes	clutches and br Rated voltage DC 45	akes /90/180 V	Spring-actuated brake							
nsulating resistance	Between terminal	and body			DC 500	V, 100 M Ω with	Megger			
lielectric strength voltage	Detween ter mindt	and body	1500 V AC,	50 Hz, 1 min.	220	00 V AC, 50 Hz, 1	min.	1500 V AC, 5	50 Hz, 1 min.	
Lead wire	UL style/Siz	e	UL3398	• AWG22		UL3271 • AWG22			• AWG22	
Usage environment	With no condens	sation				-15 ~ +60℃				
Mass	Per produc	t	0.0	20kg		0.021kg		0.023kg		

Structure

Dimensions

Terminals and Functions

Lead color	Function name	Function description
Yellow (two)	Input side	Connector for a commercial power supply
Red/white	Output side	Connector for an electromagnetic clutch or brake

Characteristics

For Both Half-wave Rectified and Full-wave Rectified

BEM-2H/4H types take a commercial power supply as the input and generate a half-wave rectified DC voltage on the output side. These power supply devices are known for their very simple construction and low cost, but their voltage pulse is large. They are therefore prone to generating variations in operating response in electromagnetic clutches and brakes, they produce a howling noise when conducting, and they tend to generate more heat from their electromagnetic coils than full-wave rectified supplies or smoothing supplies.

When the above are to be avoided, consider changing to a full-wave rectified supply (BEM-2F types), smoothing supply, or a DC 24 V specification.

BEM-2F types generate a full-wave rectified DC voltage. These power supply devices are known for having smaller voltage pulses than half-wave rectified supplies and tending to have little variation in electromagnetic clutch and brake operating response.

```
How to Calculate Output Voltage
Output voltage = Input voltage × a (a set coefficient)
* a (set coefficient) = 0.45: half-wave rectified/0.9:
full-wave rectified
(Ex.)
BEM-2H, -4H: 200 V AC × 0.45 = 90 V DC
BEM-2F: AC100V × 0.9 = DC90V
```

Note that when the rated voltage of the electromagnetic coil does not match the output voltage calculated above, you will not be able to obtain the electromagnetic clutch/brake characteristics given in the specifications.

Precautions for Use

Primary and Secondary Control Methods

These power supply devices use primary control, in which electromagnetic clutches and brakes are controlled by turning input voltage on and off, as their basic control.

This control system saves wiring, but has a longer armature release time than secondary control, extending the braking time of springactuated brakes.

This phenomenon becomes more marked the larger the electromagnetic clutch or brake is. Primary control is thus used predominantly on smaller spring-actuated brakes.

Also, primary control does not generate the surge voltage (counterelectromotive voltage) when the electromagnetic clutch or brake goes off that secondary control does, so it is very effective in machinery when noise must be avoided.

When secondary control is used to improve response, install relay contacts between the output terminals and electromagnetic clutches/ brakes as shown in the wiring diagram at right.

At this time, you must install discharge elements such as varistors between relay contacts or in parallel to the electromagnetic clutch/ brake.

Input voltage specifications Rated input 2: 200 V AC Rated input 4: 400 V AC Lead wire length, three options available Rectification method H: Half-wave rectification F: Full-wave rectification

Web code

120: 120 mm 240: 240 mm 360: 360 mm COUPLING

ETP BUSHINGS

ELECTROMAGNETIC CLUTCHES & BRAKES

SPEED CHANGERS

INVERTER

তাত

ং ⊚

TOROUE LIMITERS

ROSTA

SERIES

	ELECTROMAGNETIC-				
	ACTUATED MICRO				
	CLUTCHES & BRAKES				
	ELECTROMAGNETIC-				
	ACTUATED				
	CLUTCHES & BRAKES				
HESA	ELECTROMAGNETIC				
S B	CLUTCH & BRAKE				
	UNITS				
SPRING-ACTUATED BRAKE					
FLECTROMACNETIC					

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

ead wires < Secondary side control method >>	
The brake output is controlled by the input power be	being input to
the (yellow) input lead wire and the relay being togg	gled ON/OFF.

Yellow-yellow, power supply input side	
MC (Contact a) control	
Red-white, output side (Brake)	

Wiring Methods and Timing Charts

Red

(+)

ellow

(∼)

<< Primary side control method>>

Red (+)

Yellow

The output for the (red/white) output lead wire is controlled by the input power to the (yellow) input lead wire being toggled ON/OFF.

There is no longer a counterelectromotive voltage from the electromagnetic coil when power goes on or off, but armature release time is longer, so confirm this

MC

Primary Control

.d

Lead wires

Yellow-vellow

power supply input side

Red-white, output side (Brake) White

Yellow

 (\sim)

prior to use

White

Yellow

 (\sim)

Secondary Control

MODELS								
BES								
BEH	 	 		·			 	
BEW								
BEW-S								
BEW-W								
BEW-FH	 	 						
BEM	 	 		•		Ì		
BEM-T	 	 					 	

C032

ELECTROMAGNETIC CLUTCH & BRAKE UNITS

BEM -T Types Supplies with Ultra-compact Leads

Specifications										
	Model		BEN	И-2Т		RFM-4T				
	AC100V					DEM TI				
	AC200V	± 10%	•	•	•					
Input voltage	Input voltage AC400V	50/60Hz					•			
	Maximum inpu	Maximum input voltage		280V		AC480V				
	Rectification method				Half-wave rectification	Half-wave rectification				
	Output voltage		DC45V	DC90V	DC45V	DC90V	DC180V			
Output current	When the ambient temperature is 20°C tput current Values in parentheses are for an ambient temperature of 60°C		DC1.0A	(DC0.6A)		DC0.7A (DC0.5A)				
Output Wattage	When the ambient ten Values in parentheses temperature	nperature is 20℃ are for an ambient e of 60℃	45W (25W)	90W (50W)	30W (20W)	60W (40W)	125W (90W)			
	Voltage speci Figures in parentheses	ifications are input voltages	DC45V (AC100V)	DC90V (AC200V)	DC45V (AC100V)	DC90V (AC200V)	DC180V (AC400V)			
		01	•	٠	•	•	•			
		02	•	•	•	•	•			
		03	•	•	•	•	٠			
		04	•	•	•	•	•			
		05	•	•	•	•	٠			
Size setting	• : Applicable	06	•	•	•	•	•			
	\triangle : Applicable depending on	08	•	•	•	•	•			
	clutch or brake model	10	•	•	•	•	•			
		12		•		•	٠			
		14		•		\bigtriangleup	•			
		16		•		\bigtriangleup	•			
		18		\bigtriangleup		\bigtriangleup	•			
		20		\bigtriangleup		\bigtriangleup	\bigtriangleup			
		25		\bigtriangleup		\bigtriangleup	\bigtriangleup			
Applied clutches/brakes	MIKI PULLEY electrom clutches and Rated voltage DC	nagnetic-actuated I brakes : 45/90/180 V	Spring-actuated brake							
Insulating resistance	Between termin	al and hody		DC 5	00 V, 100 M Ω with Me	egger				
Dielectric strength voltage	Detween tel min	at and bouy	1500 V AC,	50 Hz, 1 min.	2	2000 V AC, 50 Hz, 1 min				
Lead wire	UL style/	Size	UL3398	• AWG22		UL3613 • AWG22				
Usage environment	With no cond	ensation			$-20 \sim +60^{\circ}$ C					

Per product 0.008kg

Structure

Mass

Dimensions

0.011kg

Terminals and Functions						
Terminal	Function name	Function description				
Leads (two)	Input side	Connector for a commercial power supply				
Tab terminals (two locations)	Output side	Connector for an electromagnetic clutch or brake				

Recommended Products for the Tab Terminal Partner Side

Receptacle	170043-1
 Insulation sleeve 	170823-1
Flat insertion terminal	CSS 62853-F

(made by AMP) (made by AMP) (made by Nichifu)

Design of Mounting Part

The standard mounting feet can not only be moved, they can be removed and a dedicated mount used. Design using the following figure as a guide or consult Miki Pulley.

Characteristics

Output System

BEM-2T/4T types take a commercial power supply as the input and generate a half-wave rectified DC voltage on the output side. These power supply devices are known for their very simple construction, compact size, and low cost, but their voltage pulse is large. They are therefore prone to generating variations in operating response in electromagnetic clutches and brakes, they produce a howling noise when conducting, and they tend to generate more heat from their electromagnetic coils than full-wave rectified supplies or smoothing supplies.

When the above are to be avoided, consider changing to a full-wave rectified supply (BEM-2F types), smoothing supply, or a DC 24 V specification.

How to Calculate Output Voltage Output voltage = Input voltage × a (a set coefficient) * a (set coefficient) = 0.45: half-wave rectification (Ex.) BEM-2T: AC200V × 0.45 = DC90V

Note that when the rated voltage of the electromagnetic coil does not match the output voltage calculated above, you will not be able to obtain the electromagnetic clutch/brake characteristics given in the specifications.

Precautions for Use

Primary and Secondary Control Methods

These power supply devices use primary control, in which electromagnetic clutches and brakes are controlled by turning input voltage on and off, as their basic control.

This control system saves wiring, but has a longer armature release time than secondary control, extending the braking time of springactuated brakes.

This phenomenon becomes more marked the larger the electromagnetic clutch or brake is. Primary control is thus used predominantly on smaller spring-actuated brakes.

Also, primary control does not generate the surge voltage (counterelectromotive voltage) when the electromagnetic clutch or brake goes off that secondary control does, so it is very effective in machinery when noise must be avoided.

When secondary control is used to improve response, install relay contacts between the output terminals and electromagnetic clutches/ brakes as shown in the wiring diagram at right.

At this time, you must install discharge elements such as varistors between relay contacts or in parallel to the electromagnetic clutch/ brake.

Wiring Methods and Timing Charts

Primary Control

<<Primary side control method>> The output for the tab terminal on the output side is controlled by the input power to the input lead wire being toggled ON/OFF.

Lead wire, power supply—— input side	
Tab terminal, output side — (Brake)	

³⁾ *Check the above before use as even though the back voltage from the electromagnetic coil will no longer generate when the power supply is toggled ON/OFF, the armature release time will increse.

Secondary Control

<<Secondary side control method>> The brake output is controlled by the input power being input to the input lead wire and the relay being toggled ON/OFF.

Lead wire, power supply input side	
MC (Contact a)	
Brakes	
How to Place an Order	
BEM-2T 120L Lead wire length, three opti	ons available 120: 120 mm
2T: 200 V AC 4T: 400 V AC	240: 240 mm 360: 360 mm

ETP BUSHINGS

ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS

ROSTA

SERIES

ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
IC-ACTUATED CLUT	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
CHES AND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
S	

BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS

BES

BEH

BEW

BEW-S

BEW-W

BEW-FH

BEM

BEM-T

To download CAD data or product catalogs:

www.mikipulley.co.jp

C

Web code

Types of Power Supply Devices

Power supply devices are necessary for electromagnetic clutches and brakes to operate. MIKI PULLEY's electromagnetic clutches and brakes all use DC power supply coils, so commercial power supplies must be converted to DC voltages by any one of a variety of methods and that voltage then supplied to the clutch or brake.

There are many ways to create a DC power supply voltage. The operating characteristics of the electromagnetic clutch and brake are greatly affected by the type and specifications of that power supply device.

Transformer Stepdown/Single-phase Fullwave Rectified System

This is the most commonly used system for power supplies for electromagnetic clutches/ brakes. This system is used with DC 24 V electromagnetic clutches/brakes, has a simple, sturdy construction, and has major resistance to surge voltages (counterelectromotive voltage) that are produced when electromagnetic clutches/brakes are turned on or off, making this a rectification system that is very easy to work with.

Switching Power Supplies (Off-the-shelf)

These are widely used as power supplies (usually DC 24 V) for relays, timers, programmable controllers, and a variety of other electrical equipment. They are light, compact power supply devices that generate smoothed, stable voltages.

However, these power supplies are characteristically vulnerable to surge voltages generated when electromagnetic coils like those found in electromagnetic clutches and brakes turn on and off. Manufacturers of switching power supplies do not guarantee them for use in such applications. If you are using a switching power supply as the power supply device for an electromagnetic clutch or brake, you must connect a diode to serve as a surge absorber in parallel to the electromagnetic coil.

Surge absorbing diodes dramatically lengthen the armature release time, so care is advised in their use.

Surge absorption diode

The PWM Control System

Repeatedly turning energization on and off is a system that creates a simulation of a given voltage as the effective value. Compared to the wasting of surplus electrical energy as heat in resistance control or the like, PWM control saves energy by turning energization on and off at high speed with control elements to get only the power needed, meaning that energy is not wasted as heat.

Half-wave rectified power supply devices are circuits that contain two diodes, take commercial power supplies as direct input, and generate half-wave rectified DC voltage on the output side.

These power supply devices have very simple circuit structures compared to other power supply devices, and they are compact and low cost.

However, they produce variations of around 10 ms in electromagnetic clutch/brake operation due to the energizing system, which repeatedly starts and stops in a cycle of half of 50/60 Hz, the frequency of commercial power supplies. They are also prone to producing a howling noise when they are energized, and tend to generate more heat from their electromagnetic coils than full-wave rectified supplies or smoothing supplies.

This means they can be used when these trends will not have a major impact, in the event they occur. Miki Pulley recommends the use of half-wave rectified supplies in combination with spring-actuated brakes.

When variations in operation, howling noise when energized, and the like are to be avoided, consider changing to a full-wave rectified supply (BEW-1R/2R/4R types) or a DC 24 V specification.

Calculating the Output Voltage from a Half-wave Rectified Power Supply

Output voltage = Input voltage × a (a set coefficient) * a (set coefficient) = 0.45: half-wave rectification (Fx.)

AC100V	×	0.45	=	DC45V
AC200V	×	0.45	=	DC90V
AC400V	X	0.45	=	DC180V

Full-wave Rectified Supplies (BEW and BEM Models)

Full-wave rectified power supply devices are circuits that contain four diodes, take commercial power supplies as direct input, and generate full-wave rectified DC voltages on the output side.

These power supplies are somewhat more expensive than half-wave rectified supplies, since they use more diodes to construct circuits, but they keep voltage pulses low, so they can suppress variation in electromagnetic clutch/brake operating times.

They can therefore be used as power supply devices for all electromagnetic clutches and brakes.

Calculating the Output Voltage from a Full-wave Rectified Power Supply

Output voltage = Input voltage × a (a set coefficient) * a (set coefficient) = 0.9: full-wave rectification (Ex.)

 $AC100V \times 0.9 = DC90V$ $AC200V \times 0.9 = DC180V$

ETP BUSHINGS

Overexcitation Supplies (BES, BEH, and BEW-FH Models)

Overexcitation power supplies are power supply devices that apply and control voltage above the rated voltage for a certain set period of time with the goal of speeding up the armature pull-in time of electromagnetic clutches and brakes, boosting the torque generated, and lengthening service life (electromagnetic-actuated clutches/ brakes).

By using these power supplies, the above described electromagnetic clutch and brake characteristics are notably improved.

Caution is advised, however, because if the conducting frequency and time of the electromagnetic clutch/brake are not set appropriately, the coil of the electromagnetic clutch/brake will generate abnormal heat, potentially leading to damage.

Reverse Excitation Function (BEH Models)

The reverse excitation function is a conductance system that, when energization to the electromagnetic clutch/brake is turned off, applies and controls, for a certain set period of time, a voltage of opposite polarity to the voltage just prior to energization going off, with the goal of shortening the armature release time of electromagnetic clutch/brake.

These power supply devices are more effective the larger the electromagnetic clutch or brake is. With our clutch/brake size 25, it achieves five times the responsiveness of an ordinary transformer stepdown/single-phase full-wave rectified system.

This is a big help in improving high-frequency operation and fighting phenomena.

* MIKI PULLEY overexcitation power supply devices are pre-set to optimal values.

They are pre-set to the optimal value for the given size of MIKI PULLEY electromagnetic clutch or brake, so no special adjustments are needed when installing. If you are not combining the power supply with a MIKI PULLEY electromagnetic clutch/brake, these are not optimal value conditions. Please consultMiki Pulley.

* BEH models are smoothing overexcitation power supply devices.

BEH models, which are smoothing power supplies, have very stable electromagnetic clutch/brake operating response characteristics compared to non-smoothed supplies.

Weak Excitation Supplies (BES and BEW-FH Models)

In recent years, the dimensions of electromagnetic coils and structural components have become more complex and capacities larger to meet demands for spring-actuated brakes that are more compact, slimmer, and provide higher torque.

Directly opposing societal demands for greater energy savings, greater recyclability, and avoidance of toxic materials have meanwhile created a challenging environment for electromagnetic clutches and brakes.

Spring-actuated brakes by their nature require a strong attraction force when the armature is being pulled in, but once they are pulled in, can be held in place with only a tiny amount of power.

Power beyond that required to maintain the spring-actuated brake in a released state can be considered wasted power; spring-actuated brakes waste very large amounts of such power.

Weak excitation power supplies remedy this problem of springactuated brakes and achieve the following sorts of effects.

Miki Pulley can design many types of both spring-actuated brakes and power supply devices to resolve such problems. Do not hesitate to consult us.

Compact, slim, high torque, high responsiveness, and long service life

A compact, slim, high-torque, and highly responsive spring-actuated brake with a long service life is achieved by designing the brake assuming that it will use a weak excitation power supply.

Energy saving

By creating a weak excitation state, they cut ordinary power by more than 90% while similarly reducing heat generated by electromagnetic coils by more than 90%.

Reducing the fault rate

They dramatically reduce burning of spring-actuated brakes caused by abnormal heat generation in electromagnetic coils or rises in ambient temperature, as well as burning in the periphery of spring-actuated brakes.

Increasing recyclability

They can be broken down into their constituent raw materials, increasing the recyclability of structural components.

El Cl	ECTROMAGNETIC
SI &	PEED CHANGERS REDUCERS
	IVERTERS
LI	NEAR SHAFT DRIVES
	DRQUE LIMITERS
	DSTA
SER	IIES
ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
	ELECTROMAGNETIC-

ACTUATED MICRO
CLUTCHES & BRAKES
ELECTROMAGNETIC-
ACTUATED
CLUTCHES & BRAKES
ELECTROMAGNETIC
CLUTCH & BRAKE
UNITS

SPRING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

BES
BES
BES BEH
BES BEH BEW

BEW-W BEW-FH

BEM-T

Control of Electromagnetic Clutches and Brakes

Power supply devices are what is required to make electromagnetic clutches and brakes work, but control devices are necessary for freely controlling electromagnetic clutches and brakes consistent with machinery operation, so this portion must be installed separately.

Miki Pulley's BEH models, which are high-performance power supplies, get minute control input from programmable controllers or the like and perform high-Wattage energization control.

However, other power supply devices are constructed so that the power applied to the electromagnetic clutches and brakes is applied unaltered to control contacts or the like, meaning that power relays and other power control equipment is needed for control.

Each piece of control equipment has its own features, so those features must be adequately studied and control equipment selected that is matched to the machinery specifications.

Power Relays (Off-the-shelf)

There are relays that can control relatively large currents up to 10 A, which are generally called power relays.

These relays guarantee power control of high voltage and current values for AC power supplies, but in DC power supply control, they must be used within extremely low specification value ranges when the load is a DC inductive load.

This is because relay contacts are heavily worn by surge voltage (counterelectromotive voltage) generated during electromagnetic coil control. Since electromagnetic clutches and brakes have electromagnetic coils, check the catalog specification values at the conditions of the DC inductive load of the power relay you will use. General guideline values are given below.

For LY series, made by Omron

Primary Control of Electromagnetic Clutches and Brakes

AC voltage: AC 110 V (no more than the maximum AC 250 V) AC current: AC 4 A max. Wattage: 100W max.

Secondary Control of Electromagnetic Clutches and Brakes

DC voltage: DC 24 V (no more than the maximum DC 125 V) DC current: DC 1 A max. Wattage: 25W max.

- * Only 24VDC-specification clutches/brakes can be used with secondary control valves (DC switching). 45 to 180VDC clutches/brakes cannot be used.
- * Secondary control values are for when a MIKI PULLEY varistor is used
- * The above values must be within the specification value ranges for all three items
- For primary and secondary control, see the control wiring of the individual model of power supply.
 When diodes are used as discharge elements, the specification values of primary control are allowed even with secondary control.

Electromagnetic Contactors (Off-the-shelf)

Electromagnetic contactors and electromagnetic switches, which are widely used in control of induction motors and the like, are very effective as control equipment for controlling large electromagnetic clutches and brakes.

These electromagnetic contactors can control several times as much voltage and current as power relays, and are particularly effective in high-voltage control.

Electromagnetic contactors are suited to high-power control, but a discharge element such as a varistor must be added for surge voltages (counterelectromotive voltages) generated when controlling electromagnetic clutches and brakes.

Were one to control a large electromagnetic clutch or brake without using a discharge element, the surge voltage generated might exceed 2000 V. This voltage easily exceeds the rated voltage of the electromagnetic contactor, ultimately greatly wearing the contacts, which is likely to prevent the equipment from having its expected service life.

General guideline values are given below.

For SC series, made by Fuji Electric

Primary Control of Electromagnetic Clutches and Brakes AC voltage: AC 220 V (no more than the maximum AC 440 V) AC current: AC 3 A max. Wattage: 450 W max.

Secondary Control of Electromagnetic Clutches and Brakes DC voltage: DC 220 V max. DC current: DC 2 A max. Wattage: 150W max.

- * Secondary control values are for when a MIKI PULLEY varistor is used.
- The above values must be within the specification value ranges for all three items.
 For primary and secondary control, see the control wiring of the individual model of power supply.
- When diodes are used as discharge elements, the specification values of primary control are allowed even with secondary control.

Solid State Relays/SSR (Off-the-shelf)

SSRs used in control of the various load devices are highly suited to control by programmable controller. In recent years, their use has continued to grow. Most SSRs are intended for control of AC supplies; 80% of SSRs on the market are for AC power supply control.

When using an AC control SSR for an electromagnetic clutch/brake, the input voltage (which is the primary side of the power supply device) is controlled.

The "zero cross control" used in SSR control slows response when used with primary control, so be careful when using it with electromagnetic clutches and brakes.

Maximum rated voltage is a very important specification with DC supply control SSRs.

When controlling an electromagnetic clutch or brake with a DC SSR, the surge voltage generated must be kept within the SSR rating. In other words, a discharge element such as a varistor or diode must be used.

If no discharge element is added, the SSR will be damaged in a short time. For details, contact the SSR manufacturer or Miki Pulley.

Contactless Control (Power MOS-FET/Power Transistor)

The major goals of contactless control of electromagnetic clutches and brakes are high-frequency operation and high-precision operation. Such control is suited to cases in which delay of output vis-a-vis input signals, as happens with control using contacts, is undesirable. It offers major advantages such as the doing away with the need for wearrelated maintenance and the ability to make devices smaller by making a control board.

Although contactless control has these many advantages, caution is advisable when selecting elements. Should a selection be made badly, not only will the electromagnetic clutch or brake not deliver the desired characteristics, the elements will be damaged in a short period of time, and peripherals could even be affected.

The following serves as a general guide for selecting elements.

Control of selection example 101-12-13 and an ordinary switching supply

Conditions

- Clutch used: 101-12-13
- Rated voltage: DC 24 V
- Rated current: DC 1.09 A
- Varistor used: 82 V varistor (NVD07SCD082)

Elements selected

- Rated voltage: 200 V min.
- Rated current: 5 A min.

Key selection issues

The rated voltage of the element must be at least the highest voltage applied to the element.

In the above example, the surge voltage generated when the electromagnetic clutch or brake is controlled by on/off is the highest value.

Varistors have variation in clamping voltages due to their operating characteristics, and a maximum clamping voltage is defined. Under these element conditions (82 V elements), that value is 135 V.

A safety factor for this voltage is required for the element. With a minimum safety factor of 1.3, 135 V \times 1.3 = 175.5 V. Thus, the rated voltage of the element must be at least 200 V.

The rated current of the element must be at least three times the current value actually flowing. Also, the amount of heat generated by the element varies considerably with the type of element selected, energizing conditions, and ambient environment. In the end, evaluate the heat generation of the element under usage conditions, and check whether the amount of heat generated is within the specified value range of the element.

Other Control

Current control (electromagnetic-actuated clutches and brakes)

This control system is intended for torque control of electromagnetic clutches and brakes.

Electromagnetic clutches and brakes generate attraction force using the current flowing into the electromagnetic coil and transmit torque using that attraction force. The value of the current flowing into the electromagnetic coil must therefore be controlled in order to control torque.

Miki Pulley offers power supply devices for performing this current control. Feel free to consult Miki Pulley.

Voltage control

There are many different purposes to voltage control, and many different ways to implement that control. All of the following are voltage controls.

- Weak excitation control
- Simple torque control (using voltage regulation) Softens shocks upon engagement
- Speeds up armature release
- speeds up armature release
- Suppresses heat generation in electromagnetic coils • Overexcitation control

Shortens armature pull-in time

- Boosts torque
- Rapid excitation control
- Shortens armature pull-in time
- Rapid overexcitation control
- Shortens armature pull-in time Boosts torque

To implement the control described above, the power supply voltage must be set to a prescribed state and some kind of control performed.

Switching control, preparing several types of supply voltage

- Control of voltage using knob
- Switching control without using contacts
- · Voltage control that inserts resistors in series to divide voltage

Rapid excitation control

This is a circuit that makes the time constant smaller to speed up the armature pull-in time of the electromagnetic clutch or brake.

The circuit places resistors in series with the electromagnetic clutch/ brake and pre-sets the power supply voltage high. The supply voltage and the resistance values are set according to various conditions so that DC 24 V, which is the rated voltage, is applied to the electromagnetic coil.

This control method requires that a current similar to the current value flowing to the electromagnetic clutch/brake also flow to the resistors and that the resistance Wattage be set high. The heat generated by the resistors must also be considered.

Time constant

The time constant exhibits the characteristic that the value of the current flowing inward gradually rises as DC voltage is applied, since the electromagnetic clutch or brake is an inductive load. This characteristic has a value determined by the type and size of the electromagnetic clutch or brake, such that the larger the object, the slower the current movement becomes.

Rapid overexcitation control

The armature pull-in time can be made even shorter than with rapid excitation control by adding a large capacitor to the rapid excitation circuit.

An overexcitation voltage is generated by the capacitor, so the on/off times must be set factoring in the heat generated by the electromagnetic coil and the time to charge the capacitor.

COUPLINGS

ETP BUSHINGS

ELECTROMAGNETIC CLUTCHES & BRAKES

SPEED CHANGER

LINEAR SHAFT DRIVES

TORQUE LIMITERS

ROSTA

SERIES

ELECTROMAGNE	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
TIC-ACTUATED CLUTO	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
CHESAND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
SI Bi	PRING-ACTUATED RAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS	
BES	
BEH	
BEW	
BEW-S	
BEW-W	
BEW-FH	
BEM	
BEM-T	•

Surge Voltages and Discharge Elements

What is Surge Voltage?

When current flows to the electromagnetic coil of an electromagnetic clutch or brake, the coil is excited, the pull-in force required by the clutch or brake is generated, and work is performed.

Energy is accumulated within the coil, which has reached the prescribed current value; the larger the clutch or brake size, the larger is the amount of that energy. At this time, if current is shut off, a surge voltage of only part of the accumulated energy is generated. This is generated by working to keep current flowing, since the electromagnetic clutches and brakes are inductive loads. Surge voltages are larger with larger sizes, as noted above, and voltages easily exceeding 1000 V are generated in control contacts and within electromagnetic coils. This phenomenon can cause contact burning or electromagnetic coil insulation breakdown. It is thus very important to use discharge elements to limit this surge voltage to an appropriate value.

In general, a high surge-limit voltage means a short armature release time; conversely, a low limit voltage tends to mean a longer time. When selecting a circuit protector, it is very important to factor in machinery specifications, power supply device/control circuit conditions, and the like.

The Role of Varistors

We recommend using a varistor for the discharge element.

The reason is that it is easy to set the limit voltage needed for the varistor to appropriately control the electromagnetic clutch/brake; the element is also very small and can adequately handle different amounts of surge energy.

By selecting an appropriate varistor, the electromagnetic clutch/brake can be used without impairing innate characteristics.

When the selection has an inappropriately high limit voltage, control contact may be burned or the power supply device damaged.

Conversely, when the limit voltage is too low, the varistor may be burned by the power supply device or the power supply device may be damaged. Also, even when such phenomena do not occur, the armature release time is prone to becoming long.

	Character all a manage	Comment da sera	Chave stavistics	Clutch/brake		December of developed	
Element type	Circuit diagram	Current decay	Characteristics	Size	Rated voltage (input voltage specification)	Recommended product	
				Electromag- netic-actuated #02 to #25	DC24V	NVD07SCD082 or an equivalent (NVD14SCD082 or an equivalent)	
				Electromag- netic-actuated #31 or over	DC24V	NVD14SCD082 or an equivalent	
					DC24V	NVD07SCD082 or an equivalent	
			Very effective in	Spring-	DC 45 V (AC 100 V - half- wave rectified) DC 90 V (AC 100 V - full-	NVD07SCD220 or an equivalent	
Varistor	+ 0 MC		keeping surge voltage small without adding	actuated #01 to #18	DC 90 V (AC 200 V - half- wave rectified) DC 180 V (AC 200 V - full-	NVD07SCD470 or an equivalent	
	VRZ CB		delay to the armature release time		Wave rectified) DC 180 V (AC 400 V - half- wave rectified)	NVD14SCD820 or an equivalent	
	- 0	t			DC24V	NVD14SCD082 or an equivalent	
				Spring-	DC 45 V (AC 100 V - half- wave rectified) DC 90 V (AC 100 V - full-	NVD14SCD220 or an equivalent	
				actuated #20 or over	wave rectified) DC 90 V (AC 200 V - half- wave rectified) DC 180 V (AC 200 V - full- wave rectified)	NVD14SCD470 or an equivalent	
					DC 180 V (AC 400 V - half- wave rectified)	NVD14SCD820 or an equivalent	
			Can keep power consumption of the power supply part low		DC24V	 Rated voltage of diode DC 24 V: 100 V min 	
Deviation					DC 45 V (AC 100 V - half-wave)	 AC 100 V: 400 V min. AC 200 V: 800 V min. 	
+		N	low. The armature	#01 to #25	DC 90 V (AC 100 V - full-wave)	 Rated current of diode Specification of excitation 	
Diode			release time becomes somewhat longer, so		DC 90 V (AC 200 V - half-wave)	current or more	
			care is required in high frequency use.		DC 180 V (AC 200 V - full-wave)	About 10 times coil resistance	
	110		While the effect in		DC24V	Pated valtage of diade	
			is very high, the armature		DC 45 V (AC 100 V -	DC 24 V: 100 V min.	
Diode			extremely long. Pay	#01 to #25	DC 90 V (AC 100 V - full-wave)	 AC 100 V. 400 V min. AC 200 V: 800 V min. 	
	ŤŸ		cy specifications and		DC 90 V (AC 200 V -	Specification of excitation	
	- 0	 	and brakes.		DC 180 V (AC 200 V - full-wave)	current or more	
	MO		Although armature	#01 to #25	DC24V	Capacitor C [μ F]: Ratio to contact	
Resistor			release time becomes very short, a high-break- down-voltage capacitor must be used and the device becomes large.		DC 45 V (AC 100 V - half-wave)	$\frac{C[\mu F]}{F} = \frac{0.5 \sim 1}{100}$	
+					DC 90 V (AC 100 V - full-wave)	I [A] 1 Breakdown voltage: 600 [V]	
Capacitor					DC 90 V (AC 200 V - half-wave)	current is: $R[\Omega]$	
					DC 180 V (AC 200 V -	E[V] = 1 Wattage = 1[W]	

Types of Discharge Elements

* Some spring-actuated brakes come with varistors other than those recommended above, depending on size.

* Recommended variators with NVD \square model names are made by KOA. Items in parentheses are the products that can be used.

407

ELECTROMAGNETIC

CLUTCHES & BRAKES

Symbols Used in Electrical Circuits

Figure Notations

With rapid advances in science and technology, many new codes and symbols have been adopted in drawings. The drawing symbols below have been created based on JIS handbooks and code and on drawing symbol handbooks primarily for machinery and elements that have long been widely used. The IEC standard or commonly used symbol is labeled Symbol 1; previously used symbols are labeled Symbol 2,

		Symbol			Symbol		& REDUCERS
Ν	lame	Symbol 1 (IEC or equivalent)	Symbol 2 (old symbol)	Name	Symbol 1 (IEC or equivalent)	Symbol 2 (old symbol)	INVERTERS
DC pov	wer supply			Motor	M		LINEAR SHAFT DRIVES
AC pov	wer supply			Induction motor			TORQUE LIMITERS
	Fuse		-0/0-	Generator	G		ROSTA
F a-c	Relay contact	\	¦	Electromagnetic clutch	—C)—		SERIES ELECTROMAGNETIC-
F b-c	Relay contact	<u>ب</u>	, <u> </u>	Electromagnetic brake	—B		CLUTCHES & BRAKES ELECTROMAGNETIC-
Pushbu a-c	tton switch contact			Clutch or Brake	-@-		ACTUATED CLUTCHES & BRAKES ELECTROMAGNETIC
Pushbu b-c	tton switch contact	t E	<u> </u>	Transformer	hund		CLUTCH & BRAKE UNITS
Limi a-c	it switch contact	~~		Resistor		-~~~-	SPRING-ACTUATED BRAKE
Limi b-c	it switch contact	t	- • -•	Variable resistor		<i>—yx</i> t	ELECTROMAGNETIC TOOTH CLUTCHES
Timer a-c	(ON delay) contact	_Ĭ_		Capacitor	+ +	$\stackrel{+}{\frown} \stackrel{+}{\frown}$	BRAKE MOTORS
Timer b-c	(ON delay) contact	_¥		Varistor	\$\$ -\$\$-	ż Z	POWER SUPPLIES
Knif	e switch	+-\\ +-\-\		Diode			
Magnet	ic contactor		_~~_	Rectifier (bridge type)		\rightarrow	
L	.amp	\otimes	\rightarrow	Transistor (NPN type)	-<		
В	uzzer		BZ	Transistor (PNP type)	-		
G	round	\perp		Photocoupler			
Connect	to outer case	<i>,</i> , , , , , , , , , , , , , , , , , , 		Coil	\sim	-7000-	MODELS BES

* This catalog uses the symbols that are currently the most common in its figures.

BEH BEW BEW-S BEW-W BEW-FH BEM BEM-T