CONTENTS

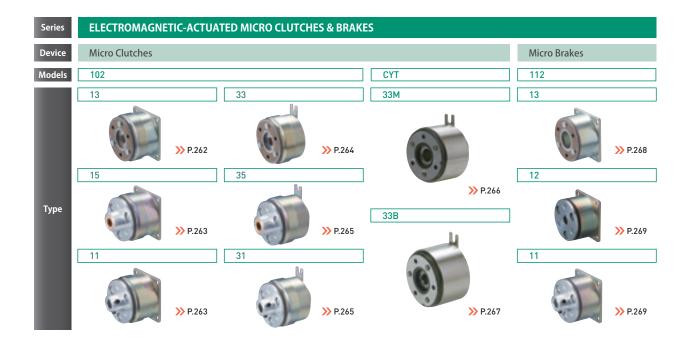
249

ETP BUSHINGS

ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS

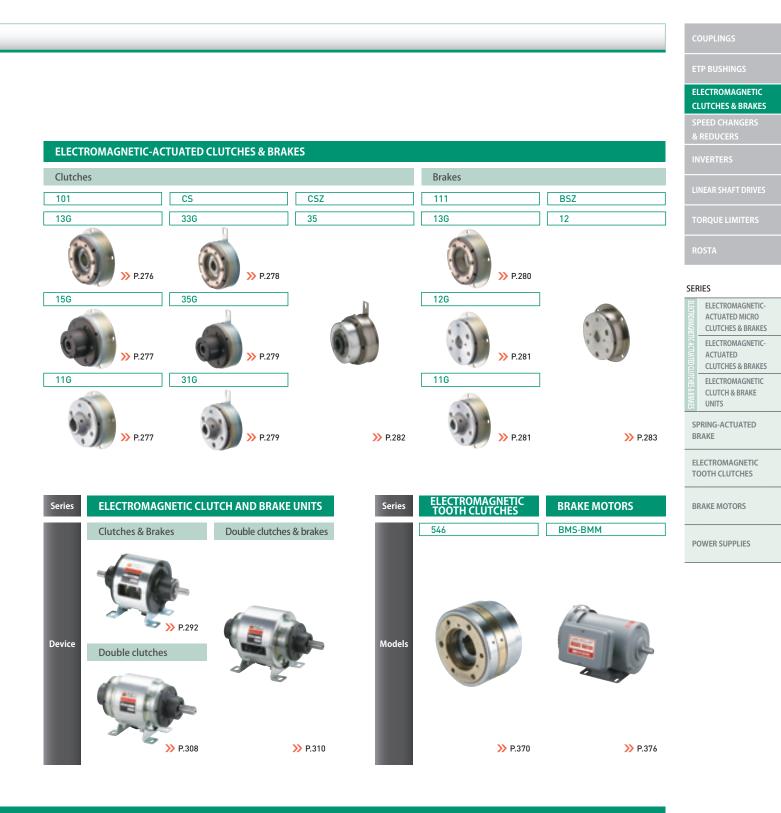
INVERTERS

LINEAR SHAFT DRIVES

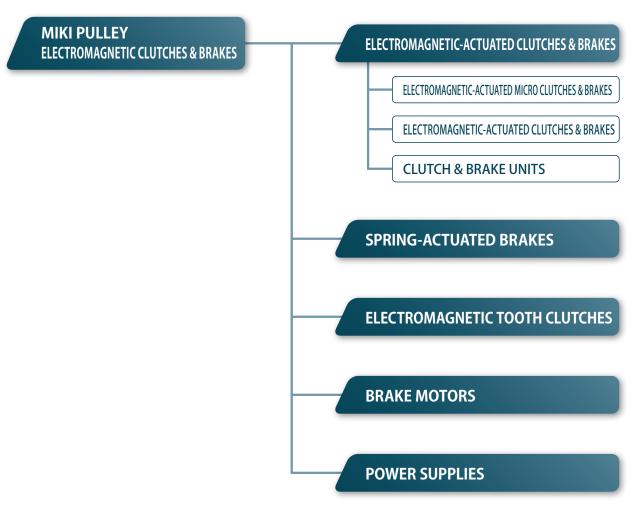

TORQUE LIMITERS

ROSTA

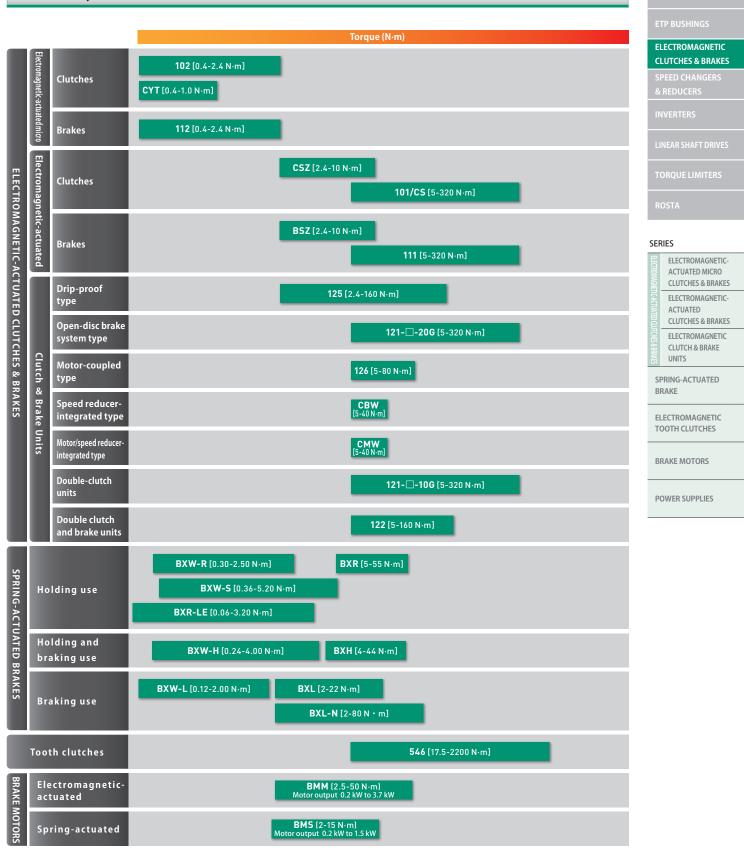
≫ 248	ELECTROMAGNETIC CLUTCHES & BRAKES	≫ 334	SPRING-ACTUATED BRAKES
250	Electromagnetic Clutch & Brake Models	336	Product Lineup
252	Selection Guide	340	BXW-L/H/S
253	Select by Product Characteristics	342	BXW-R
254	Applications	344	BXR-LE
		346	BXR
>> 256	ELECTROMAGNETIC-ACTUATED MICRO	350	BXL
	CLUTCHES & BRAKES	354	ВХН
258	Product Lineup	358	BXL-N
262	102	360	Selection Procedures
266	СҮТ		
268	112	>> 368	ELECTROMAGNETIC TOOTH CLUTCHES
≫ 270	ELECTROMAGNETIC-ACTUATED	370	546
1 210			
272	CLUTCHES & BRAKES	≫ 374	BRAKE MOTORS
276	Product Lineup 101	376	BMS
278	CS	378	ВММ
270	111		
282	csz	≫ 382	POWER SUPPLIES
283	BSZ	384	Product Lineup
200		386	BES
≫ 284	ELECTROMAGNETIC CLUTCH AND BRAKE UNITS	388	BEH
286	Product Lineup	390	BEW
292	125	392	BEW-S
296	121- 🗌 -20G	394	BEW-W
298	126	396	BEW-FH
302	CBW	398	BEM
306	СМЖ	400	BEM-T
308	121- 🗆 -10G	X 612	MIKI PULLEY Hole-Drilling Standards
310	122	013	
>> 312	ELECTROMAGNETIC-ACTUATED CLUTCHES		
	& BRAKES TECHNICAL DOCUMENT		


140 0

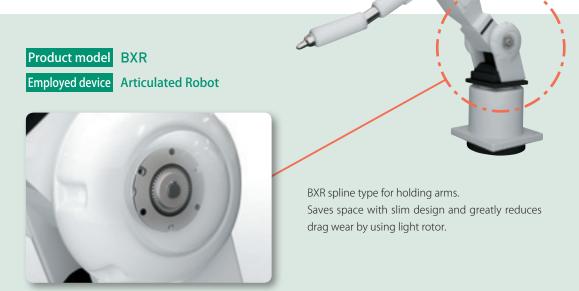
Electromagnetic Clutch & Brake Models


>> A selection guide for electromagnetic clutches and brakes begins on the next page.

Selection Guide

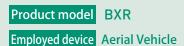

Miki Pulley divides its electromagnetic clutches & brakes into several major categories: electromagnetic-actuated clutches & brakes, spring-actuated clutches & brakes, electromagnetic tooth clutches, brake motors, and power supplies.

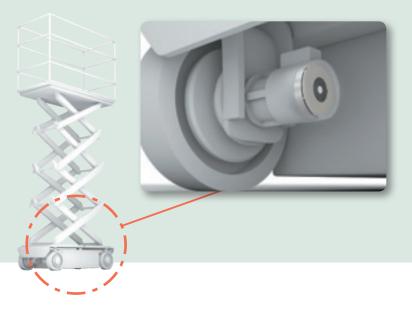
When selecting a product, have information handy on your application, required torque, performance, load properties, drive source and the like, and then use the diagram on the page at right as your guide. Selection details are described in the selection procedures given for each series.


List of Products

Select by Product Characteristics

Applications




Product model 111 Employed device Spe

Special-purpose Vehicles

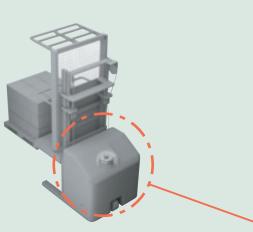
The Electromagneticactuated brake 111 model is used in the elevating device for the auxiliary leg.

BXR model as the holding brake for drive motor. Slim design helps save space.

255

ELECTROMAGNETIC CLUTCHES & BRAKES

Large BXW as the pitch drive device of a wind turbine generator.


Product modelBXW Large Size (Custom Product)Employed deviceWind Turbine Generator

Employed device Vertically Articulated Robots

The BXR-LE models owes its ultra-thin profile to a dedicated controller. Mounted on the output shaft, it is ideal for applications where space is limited. Its dedicated controller also saves energy.

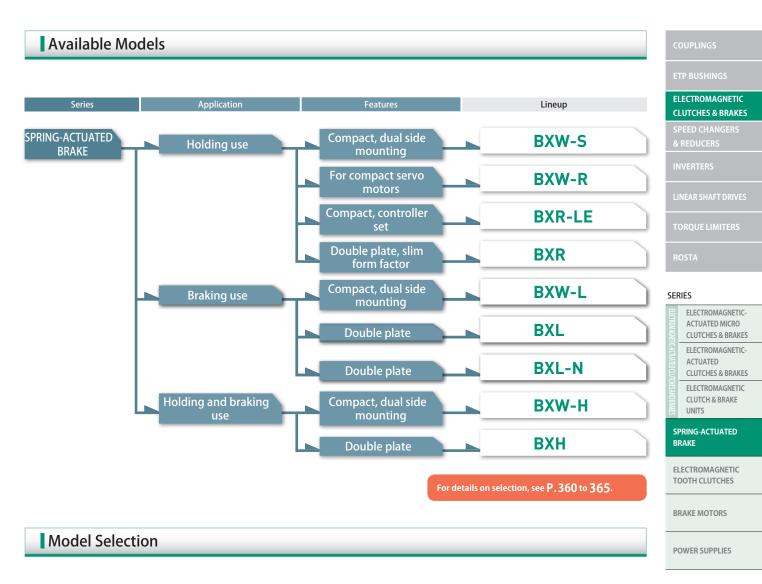
Spring-actuated brake BXH model for electric forklift. Compact, high torque design.

	PEED CHANGERS REDUCERS
	IVERTERS
	NEAR SHAFT DRIVES
	ORQUE LIMITERS
	OSTA
SEF	RIES
ELECTROMAGNE	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
	PRING-ACTUATED RAKE
FI	ECTROMAGNETIC

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

SPRING-ACTUATED BRAKES


Motors, articulated robots, actuators, machine tools, forklifts, aerial vehicles, hoists, electric carts, electric shutters, medical equipment, wind turbine generators

Provides Excellent Performance in Emergency Braking When Power Goes Out and in Long-term Holding

These are electromagnetic brakes actuated by the force of springs when not energized. These standard brakes boast a variety of advantages, including quiet operation, long service life, slim form factors, high torque in a compact package, stable braking force, and the ability to release manually. We can create so custom designs for you based on these standard products.

							Release D lever	Dust cover	Slim	Quiet mechanism		
Models/ Type	Mounting method		т	orque [N·m]						Reduced aperiodic noise	Reduced armature pull-in noise	Reduced braking noise
	0.	01 0.	.1 1	10	100	1000)					
BXW-L/H/S	Stator/ flange		0.12 ~ 5.	.20			Option	Option	Customization	Std.	Customization	Customization
BXW-R	Stator		0.30 ~ 2.5	0				_	Customization	Customization	Customization	Customization
BXR-LE	Stator	0	.06~3.20				_	_	Std.	Customization	Customization	Customization
BXR	Stator			5~	55		_	_	Std.	Customization	Customization	Customization
BXL	Stator			2~22			Option	—	Customization	Option	Option	Std.
ВХН	Stator			4~44	•		Option	_	Customization	Option	Customization	Customization
BXL-N	Stator			2~8	0		—	_	Customization	Option	Option	Std.

MODELS	
BXW	
BXR	
BXL	
вхн	
BXL-N	

Product Lineup

BXW-L/H/S

RoHS

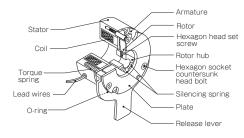
RoHS

BXW-R

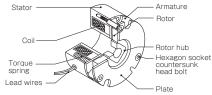
Three types for various applications

The line-up includes three types: the S type for holding, the L type for braking, and the H type for both holding and braking.

2-way mounting


The stator (a heat source) can be mounted facing either inwards or outwards.

Brake type		BXW- 🗆 - 🗆 L	BXW- 🗆 - 🗆 H	BXW- 🗆 - 🗆 S
Brake torque	[N·m]	$0.12 \sim 2.00$	$0.24 \sim 4.00$	$0.36\sim 5.20$
Operating temperature	[°C]	$-10 \sim +40$	$-10 \sim +40$	$-10 \sim +40$
Backlash		Extremely small size	Extremely small size	Extremely small size


Structure

Has release lever

GO Low inertia

Structure

motors

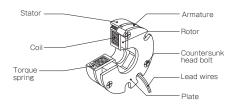
These have dedicated designs matched for specifications and dimensions for \Box 40, \Box 60, and 280 small servo motors.

Low-inertia rotor

We succeeded in dramatically reducing both mass and drag wear while ensuring adequate strength.

Brake torque	[N·m]	$0.30 \sim 2.50$
Operating temperature	[°C]	$-10 \sim +40$
Backlash		Extremely small size

BXR-LE


Ultra compact

Use with a built-in dedicated controller provides a range of benefits, including an ultra-thin profile, reduced energy consumption, lower heat emissions, higher torque and a longer service life.

Brake torque	[N·m]	$0.06\sim 3.20$
Operating temperature	[°C]	$-10 \sim +40$
Backlash		Extremely small size

Structure

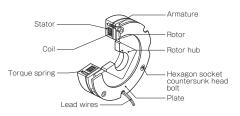
BXR

Ultra-slim

This ultra-slim design is two-thirds the thickness of our previous design.

Low-inertia rotor

We succeeded in dramatically reducing both mass and drag wear while ensuring adequate strength.


Extremely small backlash

The backlash of the spline hub type is 0.2° to 0.5°.

Brake torque	[N·m]	5~55
Operating temperature	[℃]	$-10 \sim +40$
Backlash		Extremely small size

BXL

Low noise

These reduce annoying high-frequency friction noise during braking. Products that reduce aperiodic noise or armature pull-in noise are also available.

Stable braking

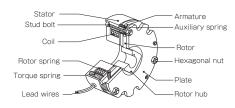
With low torque fluctuation, these brake loads instantly even when malfunctions occur.

Br	ake torque	[N·m]	2~22
0 te	perating mperature	[℃]	$-10 \sim +40$
Ba	acklash		Extremely small size

Dedicated for braking Quiet Stable braking Service life

Structure

Structure


Stato

Stud holt

Torque spring

Lead wires

Coil

AU

ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS LINEAR SHAFT DRIVES TORQUE LIMITERS ROSTA

SERIES

	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES				
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES				
	ELECTROMAGNETIC CLUTCH & BRAKE UNITS				
	PRING-ACTUATED RAKE				
ELECTROMAGNETIC TOOTH CLUTCHES					

BRAKE MOTORS

Armature Auxiliary spring

Hexagonal nut

Rotor

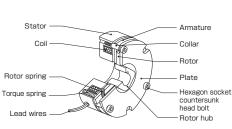
Plate Rotor hub POWER SUPPLIES

Rohs

BXH

For both holding and braking

These brakes ensure sufficient torque for holding applications while also being usable as emergency brakes.


High torque

Provide twice the torque with the same dimensions as BXL models.

Brake torque	[N·m]	4~44
Operating temperature	[℃]	$-10 \sim +40$
Backlash		Extremely small size

Structure

MODELS	
BXW	
BXR	
BXL	
вхн	
BXL-N	

BXL-N

Low noise

These reduce annoying high-frequency friction noise during braking. Products that reduce aperiodic noise or armature pull-in noise are also available.

Variety of torques

Two to three different kinds of braking torque for the same outer diameter are available to permit the most suitable design for the application at hand.

Brake torque	[N·m]	$2 \sim 80$
Operating temperature	[℃]	$0 \sim +40$
Backlash		Extremely small size

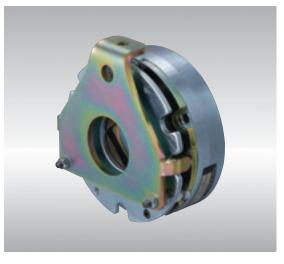
Customization Examples

BXW Large Type

This is a large version of the BXW with static friction torque of 300 N-m.

Backlash is kept extremely small by locking the rotor hub to the rotor via a disc spring.

Integrated coupling-rotor hub type



Even more compact devices can be designed by fitting the slim and compact BXR model spline rotor hub into a metal plate-spring-type coupling exterior.

Mounting flanges and brake stators can be integrated. This helps reduce the number of components and saves space.

Special Release Levers

Release levers can also be designed for specific units to match the device construction.

Web code

Contact Miki Pulley from our website for details.

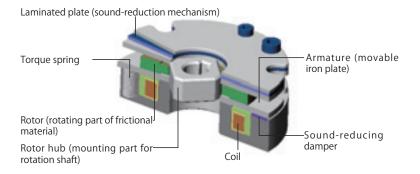
339

FAQ

Q1 I don't see anything with the torque and response I need in your standard products. Can you customize something for me?

We can customize units in many ways: outfitting them for overexcitation power supplies or use of inrush current at motor startup, changing the frictional material, boosting torque, increasing response, extending the total energy (service life), suppressing heat generation, and more. Consult Miki Pulley for details.

Overexcitation power supply BEW-2FH


Q2 Can you handle cases in which standard products cannot be installed due to dimensional constraints?

Yes, we can. For example, we have a long track record creating slimmer units that deliver the same torque. These units can provide the same torque while being only about half as thick as the standard product, although this will vary with your conditions. Consult Miki Pulley for details.

Q3 What do you have for dealing with noise issues?

A Spring-actuated brakes have a number of types of noises, such as (1) rattling generated by microvibrations during rotating, (2) armature pull-in and release noise, (3) friction noise (chirping) during braking, and (4) grinding noise under drive (when the brake is released). We have ways of reducing all of these. The figure below shows an example.

To reduce pull-in/release noise: Special plate specification

To reduce grinding noise: Single-side braking specification

ETP BUSHINGS
ELECTROMAGNETIC CLUTCHES & BRAKES
CLUICHES & DRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA
SERIES

	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES	
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES	
CHESANDBRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS	
s		

BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

MODELS	;			
BXW				
BXR		 	 	
BXL			 	
вхн		 	 	
BXL-N		 	 	

BXW Models

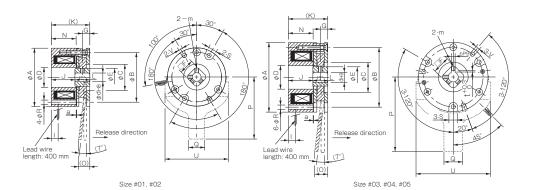
Specifications

■ BXW- □ - □ L (Braking use)

		Static friction		Coil (a	t 20℃)		res	Lead	wire	Max.	Rotating part	Allowable braking	Total braking	Armature	Armature	Mass
Model	Size	torque Ts [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	Heat Istance Iass	UL style	Size	rotation speed [min ⁻¹]	moment of inertia J [kg·m²]	energy rate Pbaℓ[W]	energy ET[J]	pull-in time ta [s]	release time tar [s]	[kg]
			12	5.0	0.417	28.8	F									
			24	5.0	0.208	115	F									
BXW-01-10L	01	0.12	45	5.0	0.111	405	F	UL3398	AWG26	5000	$0.6 imes 10^{-6}$	2.5	$1.5 imes 10^{6}$	0.008	0.015	0.2
			90	5.0	0.056	1622	F									
			180	5.0	0.028	6486	F									
			12	6.6	0.550	21.8	F									
BXW-02-10L			24	6.6	0.275	87.3	F									
BXW-02-10L	02	0.25	45	6.6	0.147	307	F	UL3398	AWG26	5000	1.9×10^{-6}	5.0	$3.0 imes 10^{6}$	0.008	0.015	0.3
DATE OF 125			90	6.6	0.073	1228	F									
			180	6.6	0.037	4912	F									
			12	9.0	0.750	16.0	F									
BXW-03-10L			24	9.0	0.375	64.0	F	UL3398 /								0.4
BXW-03-10L	03	3 0.50	45	8.2	0.182	247	F		AWG26	5000	3.8×10 ⁻⁶	10.0	4.5 × 10 ⁶	0.025	0.025	
2,00 00 122			90	8.2	0.091	988	F									
			180	8.2	0.046	3954	F									
			12	11.5	0.958	12.5	F									
BXW-04-10L			24	11.5	0.479	50.1	F									
BXW-04-10L	04	1.00	45	10.0	0.222	203	F	UL3398	AWG22	5000	12.0×10^{-6}	20.0	$7.0 imes 10^{6}$	0.030	0.030	0.6
			90	10.0	0.111	810	F									
			180	10.0	0.056	3241	F									
			12	13.0	1.083	11.1	F									
BXW-05-10L			24	13.0	0.542	44.3	F									
BXW-05-10L	05	2.00	45	13.0	0.289	156	F	UL3398	AWG22	5000	23.0×10^{-6}	30.0	$12.0 imes 10^{6}$	0.035	0.035	0.8
			90	13.0	0.144	623	F									
			180	13.0	0.072	2492	F									

■ BXW- □ - □ H (Holding and braking use)

		Static friction		Coil (a	t 20℃)		_ res _	Lead	wire	Max.	Rotating part	Allowable braking	Total braking	Armature	Armature	Mass
Model	Size	torque Ts [N∙m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	Heat istance class	UL style	Size	rotation speed [min ⁻¹]	moment of inertia J [kg·m ²]	energy rate Рьа ℓ [W]	energy ET[J]	pull-in time ta [s]	release time t _{ar} [s]	[kg]
			12	5.0	0.417	28.8	F									
			24	5.0	0.208	115	F									
BXW-01-10H	01	0.24	45	5.0	0.111	405	F	UL3398	AWG26	5000	$0.6 imes 10^{-6}$	0.5	$0.2 imes 10^{6}$	0.010	0.010	0.2
			90	5.0	0.056	1622	F									
			180	5.0	0.028	6486	F									
			12	6.6	0.550	21.8	F									
BXW-02-10H			24	6.6	0.275	87.3	F									
BXW-02-12H	02	0.50	45	6.6	0.147	307	F	UL3398	AWG26	5000	1.9×10^{-6}	1.0	$0.3 imes 10^{6}$	0.010	0.010	0.3
			90	6.6	0.073	1228	F									
			180	6.6	0.037	4912	F									
			12	9.0	0.750	16.0	F									
BXW-03-10H		1.00	24	9.0	0.375	64.0	F	UL3398								0.4
BXW-03-12H	03		45	8.2	0.182	247	F		AWG26	5000	3.8 × 10 ⁻⁶	2.0	0.5 × 10 ⁶	0.035	0.020	
			90	8.2	0.091	988	F									
			180 12	8.2 11.5	0.046	3954 12.5	F									
			24	11.5	0.958	50.1	F									
BXW-04-10H	04	2.00	24 45	10.0	0.479	203	F	UL3398	11000	5000	12.0 × 10 ⁻⁶	4.0	1.0×10^{6}	0.040	0.025	0.6
BXW-04-12H	04	2.00	45 90	10.0	0.222	203 810	F	0L3398	AWG22	5000	12.0 × 10 °	4.0	1.0 × 10°	0.040	0.025	0.0
			180	10.0	0.056	3241	F									
			12	13.0	1.083	11.1	F									
			24	13.0	0.542	44.3	F									
BXW-05-10H	05	4.00	45	13.0	0.289	156	F	UL3398	AWG22	5000	23.0 × 10 ⁻⁶	6.0	2.0×10^{6}	0.045	0.030	0.8
BXW-05-12H			90	13.0	0.144	623	F	020000		2000	23.0 ~ 10 °	0.0	2.0 ^ 10°	0.015	0.000	0.0
			180	13.0	0.072	2492	F									
			.50	. 5.0	0.072	2.72										


BXW-□-□S (Holding use)

S	tatic friction		Coil (a	t 20℃)		res	Lead	wire	Max.	Rotating part	Allowable braking	Total braking	Armature	Armature	
Size	torque Ts [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	Heat istance class	UL style	Size	rotation speed [min ⁻¹]	moment of inertia J [kg·m ²]	energy rate Pba ℓ [W]	energy ET[J]	pull-in time ta [s]	release time t _{ar} [s]	Mass [kg]
)1	0.36	24	5.0	0.208	115	F	UL3398	AWG26	5000	0.6×10^{-6}	_	-	0.025	0.010	0.2
02	0.75	24	6.6	0.275	87.3	F	UL3398	AWG26	5000	1.9×10 ⁻⁶	-	-	0.030	0.010	0.3
)3	1.50	24	9.0	0.375	64.0	F	UL3398	AWG26	5000	3.8×10 ⁻⁶	-	-	0.035	0.020	0.4
)4	2.60	24	11.5	0.479	50.1	F	UL3398	AWG22	5000	12.0 × 10 ⁻⁶	-	-	0.040	0.025	0.6
)5	5.20	24	13.0	0.542	44.3	F	UL3398	AWG22	5000	23.0 × 10 ⁻⁶	_	-	0.045	0.030	0.8
)	cizz 11 12	torque Ts [N·m] 11 0.36 12 0.75 13 1.50 14 2.60	torque Ts [N·m] Voltage [V] 11 0.36 24 12 0.75 24 13 1.50 24 14 2.60 24	torque Voltage Wattage Ts [N·m] Voltage [V] 11 0.36 24 5.0 12 0.75 24 6.6 13 1.50 24 9.0 14 2.60 24 11.5	torque Ts [N·m] Voltage [V] Wattage [W] Current [M] 11 0.36 24 5.0 0.208 12 0.75 24 6.6 0.275 13 1.50 24 9.0 0.375 14 2.60 24 11.5 0.479	torque Ts [N·m] Voltage [V] Wattage [W] Current [A] Resistance [Ω] 11 0.36 24 5.0 0.208 115 12 0.75 24 6.6 0.275 87.3 13 1.50 24 9.0 0.375 64.0 14 2.60 24 11.5 0.479 50.1	torque Ts [N·m] Voltage [V] Wattage [W] Current [A] Resistance [Ω] See Sec Sec Sec Sec Sec Sec Sec Sec Sec	torque Ts [N·m] Voltage [V] Wattage [W] Current [A] Resistance [Ω] Besistance [Ω] Besistance Stress Besistance Stress UL style 11 0.36 24 5.0 0.208 115 F UL3398 12 0.75 24 6.6 0.275 87.3 F UL3398 13 1.50 24 9.0 0.375 64.0 F UL3398 14 2.60 24 11.5 0.479 50.1 F UL3398	torque Ts [N-m] Voltage [V] Wattage [W] Current [A] Resistance [\Omega] Size SF UL style Size 11 0.36 24 5.0 0.208 115 F UL3398 AWG26 12 0.75 24 6.6 0.275 87.3 F UL3398 AWG26 13 1.50 24 9.0 0.375 64.0 F UL3398 AWG26 14 2.60 24 11.5 0.479 50.1 F UL3398 AWG22	torque Ts [N·m] Voltage [V] Wattage [W] Current [A] Resistance [Ω] Size [Ω] voltage style Size Size rotationspeed [min ⁻¹] 11 0.36 24 5.0 0.208 115 F UL3398 AWG26 5000 12 0.75 24 6.6 0.275 87.3 F UL3398 AWG26 5000 13 1.50 24 9.0 0.375 64.0 F UL3398 AWG26 5000 14 2.60 24 11.5 0.479 50.1 F UL3398 AWG22 5000	torque Ts [N·m] Voltage [V] Wattage [W] Current [M] Resistance [\Omega] $\frac{6}{5}$ UL style Size rotation speed [min ⁻¹] moment of inetia J[kg·m ²] 11 0.36 24 5.0 0.208 115 F UL3398 AWG26 5000 0.6×10^{-6} 12 0.75 24 6.6 0.275 87.3 F UL3398 AWG26 5000 1.9×10^{-6} 13 1.50 24 9.0 0.375 64.0 F UL3398 AWG26 5000 3.8×10^{-6} 14 2.60 24 11.5 0.479 50.1 F UL3398 AWG22 5000 1.20×10^{-6}	Voltage Wattage Current [W] Resistance $\overline{b} = \overline{b} = \overline{b} = \overline{b} = \overline{b}$ UL style Size rotation speed potation speed [min ⁻¹] momentof inertia memory are planet of the memory are plane	Itorque Ts [N·m] Voltage [V] Wattage [W] Current [A] Resistance [Ω] Bissistance [Ω] UL style Size rotation speed [min ⁻¹] moment/inertial moment/inertial [M] moment/inertial Pba ℓ [W] moment/inertial	Itorque Voltage Wattage Current Resistance \overline{F} UL Size rotation spect moment of inertia moment of i	torque Voltage Wattage Current Resistance $\overline{b} \ \overline{b} \ \overline{b}$

The armature pull-in time and armature release time are taken during DC switching.

341

Dimensions

																							Un	it [mm]
Size		Radial direction dimensions										Axial direction dimentions							Bore dimensions					
ze	Α	В	с	D	E	S	V	R	F	m	0	Р	Q	U	G	1	J	К	L	Ν	а	d	b	t
01	37	32	18	13.5	12.0	6	3	3	10	M3	-	-	-	-	4.5	5.0	22.5	31.5	9	22.5	0.10	5 6	-	-
02	47	40	21	16.0	14.5	7	3.4	3.4	12	M3	9	50	13	51	6.0	5.5	19.2	31.2	12	20.0	0.10	6 7	-	-
03	56	48	24	19.0	17.0	7	3.4	3.4	14	M3	11	60	15	60	6.0	6.0	19.9	31.9	12	20.0	0.15	8	-	-
04	65	58	35	24.0	22.0	7	3.4	3.4	18	M4	12	70	15	70	7.0	7.0	19.9	33.9	14	21.0	0.15	10	3	1.2
05	75	66	36	28.0	26.5	9	4.5	4.5	22	M4	14	80	20	80	7.0	7.0	22.1	36.1	14	21.5	0.15	12	4	1.5

* There is no release lever option for size #01.

How to Place an

Order

BXW-01-10L-24V-5

- Bore diameter (dimensional symbol d)

Voltage (Specifications table)

Application L: Braking-use H: Holding- and braking-use
S: Holding use

* Models equipped with the release lever and models with 12-V and 180-V voltage specifications are made to order.

* Contact Miki Pulley for assistance with bore diameters, d, not listed in the Dimensions tales and voltages not listed in the Specifications table.

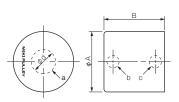
Options Dust Cover

Dust covers are available as options. These enable use in challenging environments by keeping out foreign matter.

Dust covers come in two types: full covers that have no hole for the shaft, and shaft-hole covers, which can be used on brakes mounted with the shaft passing through. You can also choose the locations of the lead exit holes for brakes mounted on plates or mounted on stators.

Specifications

Material	Ethylene propylene diene monomer (EPDM) rubber
Temperature range	-40°C to 140°C
Exterior color	Black
Applicable brake models	L type, H type, S type BXW models
Applicable brake sizes	#01, #02, #03, #04, #05
Applicable specification voltages	12 V DC, 24 V DC, 45 V DC, 90 V DC, 180 V DC


This temperature range is for dust cover materials. The operating temperature for BXW models is -10°C to 40°C.
 Cannot be mounted on BXW models with release levers or R-type BXW models.

How to Place an
now to riace an
Order

BXW-01-C02	2
Brake size 01, 02, 03, 04, 05	

Shape no. 01, 02, 03, 04, 05, 06

Dimensions

			Unit [mm]
Model	φ Α	В	<i>ф</i> d
BXW-01-C	41	33	16
BXW-02-C 🗌	51	33	21
BXW-03-C	60	33.5	24
BXW-04-C	69	35.5	30
BXW-05-C 🗌	79	37.5	30

 Symbol a indicates a hole made for brakes with shafts passing through; symbol b indicates a hole made for lead exit when mounted on a plate; symbol c indicates a hole made for lead exit when mounted on a stator.
 Shapes #01 and #04 require that a hole be made separately for leads to exit.

ETP BUSHINGS
ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS & REDUCERS
INVERTERS
LINEAR SHAFT DRIVES

ROST

SERIES

ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
IC-ACTUATED CLUT	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
HES AND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
S	PRING-ACTUATED

BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

ape No.	а	b	c
01	×	×	×
02	×	×	0

0 X

○ x x○ x ○

0 × 0 0 × ×

х

Shape 01

03

04

05

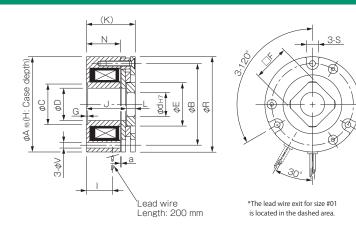
06

MODELS	
BXW	
BXR	
BXL	
ВХН	
BXL-N	

MODELS

.co.jp Web code

BXW Models


Specifications (BXW- 🗆 - 🗆 R)

(For servo motors)

		Static		Coil (at 20°C)				Lead wire		Max.	Rotating part	Allowable	Total	Armature	Armature	
Model	Size	friction torque T₅ [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	Heat istance class	UL style	Size	rotation speed [min ⁻¹]	moment of inertia J [kg·m²]	braking energy rate Ebal [J]	braking energy ET [J]	pull-in time ta [s]	release time tar [s]	Mass [kg]
BXW-01-10R	01	0.3	24	6.1	0.254	94.4	F	UL3398	AWG26	6000	1.36×10^{-7}	15	3000	0.035	0.020	0.1
BXW-03-10R	03	1.3	24	7.2	0.300	80.0	F	UL3398	AWG22	6000	1.17×10^{-6}	87	17000	0.050	0.020	0.3
BXW-05-10R	05	2.5	24	8.0	0.333	72.0	F	UL3398	AWG22	6000	3.68×10^{-6}	200	40000	0.060	0.020	0.5

* The armature pull-in time and armature release time are taken during DC switching.

Dimensions

Size	Radial direction dimensions									Axial direction dimentions								Bore dimensions	
ze	А	В	с	D	E	S	V	R	F	G	Н	1	J	К	L	Ν	а	d	d max
01	33	26.5	16	9	14	7	3.4	32.5	12	0.2	4	19	26	30	4	22.8	0.1	8.5	8.5
03	48	42	26	14	23	8	3.4	47.5	19	0.2	4	18	26	30	4	22.6	0.1	11	15
05	64	56	28	22	31	8	4.5	63.5	25	0.2	4	16	25.5	30	4.5	21.3	0.1	16	20

* Bore diameters other than the standard bore diameters given above are also possible. d max indicates the maximum bore diameter with a round shaft.

* In addition to round bores, key processing can also be handled. Consult Miki Pulley for details. * Dimensions, mounting and the like are not interchangeable with other BXW models.

How to Place an Order

BXW-01-10R-24V-8.5

Size _____ Release lever _____ 10: Not included

----- Application R: Servo motor-use

*Contact Miki Pulley for assistance with bore diameters, d, not listed in the Dimensions tales and voltages not listed in the Specifications table.

Web code

C017

Unit [mm]

ETP BUSHINGS

ELECTROMAGNETIC

CLUTCHES & BRAKES

Items Checked for Design Purposes

Precautions for Handling

Brakes

Most electromagnetic braking systems are made using flexible materials. Be careful when handling such parts and materials as striking or dropping them or applying excessive force could cause them to become damaged or deformed.

Lead Wires

Be careful not to pull excessively on the brake lead wires, bend them at sharp angles, or allow them to hang too low.

Frictional Surface

Since these are dry brakes, they must be used with the frictional surface dry. Keep water and oil off of the frictional surfaces when handling the brakes.

Precautions for Use

Environment

These brake units are dry braking systems, meaning that the torque will drop if oil residue, moisture, or other liquids get onto friction surfaces. In addition to friction surfaces, lead wires are not oil resistant. Lead wire covers may deteriorate noticeably in environments exposed to oil, cutting oil, etc.

Operating Temperature

The operating temperature range is -10° C to 40° C. If you will use the product at other temperatures, consult Miki Pulley.

Power Supplies

BXW models use commercial AC 100 V or 200 V single phase, full-wave rectified or half-wave rectified. Select as appropriate for your application. See the table below, "Recommended power supplies and circuit protectors," for the power supply devices we recommend.

Power Supply Voltage Fluctuations

Full braking performance may not be guaranteed with extreme changes in power supply voltage. Make sure to keep power supply voltage to within \pm 10% of the rated voltage value.

Air Gap Adjustment

BXW models do not require air gap adjustment. The brake air gap is adjusted when the braking system is shipped from the factory.

Circuit Protectors

If using a power supply that is not equipped with a circuit protector for DC switching, make sure to connect the recommended circuit protector device in parallel with the brake.

Recommended Power Supplies and Circuit Protectors

Recommended power supplies

Input AC power	Brake voltage	Rectification method	Recommended power supply model
AC100V 50/60Hz	DC24V	Single-phase, full-wave	BES-20-71-1
AC100V 50/60Hz	DC45V	Single-phase, half-wave	BEW-1R
AC100V 50/60Hz	DC90V	Single-phase, full-wave	BEW-1R
AC200V 50/60Hz	DC24V	Single-phase, full-wave	BES-20-71
AC200V 50/60Hz	DC90V	Single-phase, half-wave	BEW-2R
AC200V 50/60Hz	DC180V	Single-phase, full-wave	BEW-2R
AC400V 50/60Hz	DC180V	Single-phase, half-wave	BEW-4R

* A DC power supply such as a battery can also be used to supply the 24 V DC required for the brake voltage

Recommended circuit protectors

Input voltage	Brake voltage	Rectification method	Recommended circuit protector (varistor)
DC24V	DC24V	-	NVD07SCD082 or an equivalent
AC100V 50/60Hz	DC45V	IIdii-wave	NVD07SCD220 or an equivalent
AC100V 50/60Hz	DC90V	iuii-wave	NVD07SCD220 or an equivalent
AC200V 50/60Hz	DC90V	IIdii-wave	NVD07SCD470 or an equivalent
AC200V 50/60Hz	DC180V	iuii-wave	NVD07SCD470 or an equivalent
AC400V 50/60Hz	DC180V	Single-phase, half-wave	NVD14SCD820 or an equivalent

* NVD \Box SCD \Box parts are manufactured by KOA Corporation.

* DC24V indicates a product recommended with a stepdown transformer or the like. * BXW models do not come with circuit protectors.

Precautions for Mounting

Mounting Orientation

BXW models can be mounted with the stator facing inwards (stator mounted) or outwards (plate mounted). Select your mounting orientation as the application dictates. Be aware, however, that the BXW-R type is only compatible with stator centering-mark mounting. Your understanding is appreciated.

Affixing the Rotor Hub

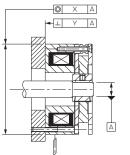
Affix the rotor hub to the shaft with hex-socket-head set screws such that the rotor hub does not touch the armature or stator. If you are applying adhesive to the hex-socket-head set screws, be careful that the adhesive does not come out onto the rotor hub surface. Note also that since the BXW-R type is constructed so that the rotor hub does not go through the stator, affix it by press-fitting it onto the shaft at a position that does not touch the armature (see dimension J) when they are assembled.

Bolts and Screws

Implement screw-locking measures such as use of an adhesive threadlocking compound to bolts and screws used to install brakes.

Shafts

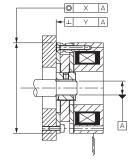
The shaft tolerance should be h7 class (JIS B 0401). Note that the harder the material used in the shaft, the less effective the hexagonsocket set screw will be. Note also that for the BXW-R type, the shaft is press fitted into the rotor hub. The shaft tolerance should be determined based on the press-fit tolerance.

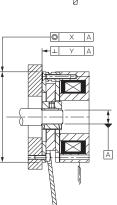

Accuracy of Brake Attachment Surfaces

Make sure that concentricity (X) and perpendicularity (Y) do not exceed the allowable values of the table below.

Allowable concentricity and perpendicularity values for the BXW

Size	Concentricity (X)	Perpendicularity (Y)				
Size	T.I.R. [mm]	T.I.R. [mm]				
01	0.05	0.02				
02	0.05	0.02				
03	0.10	0.02				
04	0.10	0.02				
05	0.10	0.02				


Stator mounted



O X A

Plate mounted

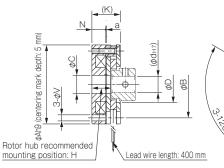
LINEAR SHAFT DRIVES TORQUE LIMITERS ROSTA SERIES ELECTROMAGNETICACTUATED MICRO CLUTCHES & BRAKES

	PRING-ACTUATED
	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
OMAGNET	CLUTCHES & BRAKES

ELECTROMAGNETIC

TOOTH CLUTCHES

BRAKE MOTORS

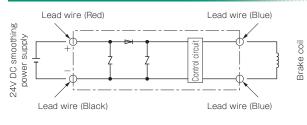

MODELS					
BXW					
BXR					
BXL					
вхн	 	 	 		
BXL-N	 	 	 	 	

BXR-LE Models For holding

Specifications (Brake unit)

Model		Static friction				Coil (at	t 20℃)					Lead wire		Max.		Allowable	Tetal	Armature	Armature	
	Size		Ove	rexcita	tion ou	tput	Normal excitation output				Heat resistance class				Rotating part moment of	braking energy	Total braking	pull-in time	release time	Mass
Model		torque Ts [N∙m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	class	class UL style	Size	speed [min ⁻¹]	inertia J [kg∙m ²]	rate Ebal [J]	energy Et [J]	(24 V DC) ta [s]	(7 V DC) tar [s]	[kg]
BXR-015-10LE	015	0.06	24	16.5	0.688	35	7	1.4	0.200	35	F	UL3398	AWG26	6000	$3.34 imes 10^{-8}$	5	1000	0.020	0.020	0.03
BXR-020-10LE	020	0.14	24	16.5	0.688	35	7	1.4	0.200	35	F	UL3398	AWG26	6000	$5.56 imes 10^{-8}$	15	3000	0.035	0.020	0.06
BXR-025-10LE	025	0.32	24	16.5	0.688	35	7	1.4	0.200	35	F	UL3398	AWG26	6000	$1.56 imes 10^{-7}$	15	3000	0.035	0.020	0.08
BXR-035-10LE	035	0.62	24	16.5	0.688	35	7	1.4	0.200	35	F	UL3398	AWG26	6000	$4.83 imes 10^{-7}$	87	17000	0.050	0.020	0.12
BXR-040-10LE	040	1.32	24	16.5	0.688	35	7	1.4	0.200	35	F	UL3398	AWG26	6000	$6.32 imes 10^{-7}$	87	17000	0.060	0.020	0.16
BXR-050-10LE	050	3.20	24	16.5	0.688	35	7	1.4	0.200	35	F	UL3398	AWG26	6000	1.51 × 10 ⁻⁶	200	40000	0.060	0.020	0.40

Dimensions (Brake unit)

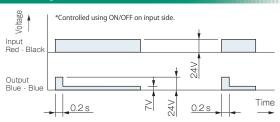

		-														Unit [mm]
Model	Size		Radial direction dimensions [mm]										tions [mm]	Rotor hub m	achining dim	ensions [mm]
Model	ze	А	В	С	D	d max.	🗆 F	S	v	Н	К	Ν	а	L	D2	□ F2
BXR-015-10LE	015	26	22	7	12	6	8	4.3	2.3	$9.5 \sim 10.0$	14.0	7.0	0.1	4 or more	10 _{-0.1}	8 _0.07
BXR-020-10LE	020	32	28	9	16	8	12	5.0	2.3	$9.5 \sim 10.0$	14.0	7.0	0.1	4 or more	14 _{-0.1}	$12_{-0.07}^{0}$
BXR-025-10LE	025	39	33	9	18	8	12	5.5	3.0	$9.5 \sim 10.0$	14.0	7.0	0.1	4 or more	14 _{-0.1}	$12_{-0.07}^{0}$
BXR-035-10LE	035	48	42	15	28	14	19	5.5	3.0	$9.5 \sim 10.0$	14.0	7.0	0.1	4 or more	23_0 _{.1}	19_007
BXR-040-10LE	040	56	50	15	27	14	19	6.5	3.4	9.9 ~ 10.4	14.5	7.4	0.1	4 or more	23 _{-0.1}	19 _{-0.07}
BXR-050-10LE	050	71	65	22	37	20	25	8.0	4.4	14.0 ~ 14.4	19.0	10.5	0.1	4.5 or more	$31_{-0.1}^{0}$	25 _{-0.07}

30

Specifications (Controller)

Mo	del	BEM-24ESN7-12	20N							
Input	/oltage	24V DC \pm 10% smoothing	power supp	oly						
Output	voltage	Initial: 24 V DC (0.2 sec.) Constant: 7 V * When the input voltage is 21 V DC, the								
Max. outp	ut current	1.0 A DC (ambient temp.: 20 $^\circ$ C), 0.8 A DC (ambient temp.: 60 $^\circ$ C)								
Time	rating	Continuous								
Insulating	resistance	500 V DC, 100 M Ω with Megger (input/output - between terminal and case)								
Dielectric stre	ength voltage	1000 V AC, 50/60 Hz, 1 min. (input/output -	between term	inal and case)						
Ambient er	nvironment	-20 to 60° C, 5 to 95% RH, no co	-20 to 60 $^\circ$ C, 5 to 95% RH, no condensation/freezing							
Ма	155	0.02kg								
Lead wire	Function	Description	UL style	Size						
Red	Input (+)	Connects the 24 V DC smoothing power supply (+)	UL3398	AWG26						
Black	Input (-)	Connects the 24 V DC smoothing power supply (-)	UL3398	AWG26						
Blue	Output	Connects the spring-actuated brake (either pole)	UL3398	AWG26						
Blue	Output	Connects the spring-actuated brake (either pole)	UL3398	AWG26						

Structure (Controller)



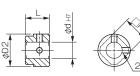
Dimensions (Controller) 120 +10 19 A part INPUI 26.3 (29) 8 OUTPU: 4.5 13 \sim 6 0.5 2 Unit [mm] 5 5 A part detail *Case:PBT (UL94V-0), Mold: Epoxy (UL94V-0)

3

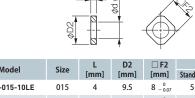
Rotor hub machining dimensions

Timing Chart (Controller)

Web code

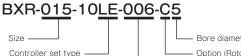


ETP BUSHINGS


ELECTROMAGNETIC

Options Rotor Hub

Set screw type (C)



Model	Size	L	D2	□ F2	m	d[mm]				
woder	Size	[mm]	[mm]	[mm]	Nominal dia.	Standard	Min.	Max.		
BXR-015-10LE	015	10	10	$8_{-0.07}^{0}$	M2.5	5	4	5		
BXR-020-10LE	020	10	14	$12_{-0.07}^{0}$	M3	8	5	8		
BXR-025-10LE	025	10	16	$12_{-0.07}^{0}$	M3	8	5	8		
BXR-035-10LE	035	12	26	$19_{-0.07}^{0}$	M4	14	8	14		
BXR-040-10LE	040	12	26	$19_{-0.07}^{0}$	M4	14	11	14		
BXR-050-10LE	050	15	35	$25_{-0.07}^{0}$	M5	20	15	20		

Model	Size	[mm]	[mm]	[mm]	Standard	Min.	Max.
BXR-015-10LE	015	4	9.5	$8 \ _{-0.07}^{0}$	5	5	6
BXR-020-10LE	020	4	14	$12_{-0.07}^{0}$	8	7	8
BXR-025-10LE	025	4	14	$12_{-0.07}^{0}$	8	7	8
BXR-035-10LE	035	4	23	$19_{-0.07}^{0}$	14	9	14
BXR-040-10LE	040	4	23	$19_{-0.07}^{0}$	14	11	14
BXR-050-10LE	050	4.5	31	25 _ 0 _ 0.07	20	15	20

How to Place an Order

(3-digit number listed in the specifications tables)

Nominal static friction torque -

Press fit type (P)

Bore diameter (dimension symbol: d) Option (Botor Hub) Blank: No rotor hub C: Set screw type P: Press fit type

d[mm]

Items Checked for Design Purposes

Precautions for Handling Brakes

Electromagnetic brakes use many soft materials. Care should be taken during handling as accidentally striking, dropping or applying excessive force to the brake could cause denting or deformation.

Lead wires

Be careful not to pull excessively on the brake lead wires, bend them at sharp angles or allow them to hang too low.

Friction Surfaces

Since these are dry brakes, they must be used with the friction surfaces dry. Keep water and oil away from the friction surfaces when handling the brakes

Precautions for Use Environment

These brake units are dry braking systems, meaning that the torque will drop if oil residue, moisture, or other liquids get onto friction surfaces. In addition to friction surfaces, lead wires are not oil resistant. Lead wire covers may deteriorate noticeably in environments exposed to oil, cutting oil, etc.

Operating Temperature

The operating temperature range is -10° C to 40° C for brakes and -20° C to 60° C for dedicated controllers. If you will use the product at other temperatures, consult Miki Pulley.

Power Supply Voltage Fluctuations

Full braking performance may not be guaranteed with extreme fluctuations in power supply voltage. Keep the power supply voltage to within \pm 10% of the rated voltage.

Air Gap Adjustment

BXR LE models do not require air gap adjustment. The brake air gap is adjusted at shipment from the factory.

Circuit Protectors

Circuit protectors should not be connected as they are built into the dedicated controllers.

Controller Operation

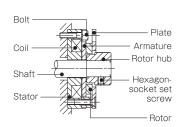
The control function is operated by the ON/OFF switch on the input side, so switching should be carried out by the input side of the dedicated controller.

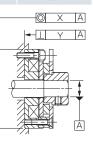
Precautions for Mounting Affixing the Rotor Hub

In the design, the rotor hub section should be installed such that it does not touch the armature or stator. Also, with the normal installation method of using hexagon-socket set screws coated with adhesive, take care not to trap adhesive between the screws and the rotor hub surface.

Bolts and Screws

Implement screw-locking measures such as use of an adhesive thread locking compound to bolts and screws used to install brakes.


Shafts


The shaft tolerance should be h7 class (JIS B 0401). If using an optional press-fit type rotor hub, the shaft tolerance should be determined based on the press-fit tolerance.

Accuracy of Brake Attachment Surfaces

Make sure that the centering mark and shaft concentricity (X) and the shaft perpendicularity (Y) relative to the brake mounting surface do not exceed the allowable values in the table below.

Model	Size	Concentricity (X)	Perpendicularity (Y)		
Model	5120	T.I.R. [mm]	T.I.R. [mm]		
BXR-015-10LE	015	0.05	0.02		
BXR-020-10LE	020	0.05	0.02		
BXR-025-10LE	025	0.05	0.02		
BXR-035-10LE	035	0.05	0.02		
BXR-040-10LE	040	0.10	0.02		
BXR-050-10LE	050	0.10	0.02		

CLUTCHES & BRAKES SERIES

ELECTROMAGNETI	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES					
C-ACTUATED CLUT	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES					
CHES AND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS					
	SPRING-ACTUATED BRAKE					
	ELECTROMAGNETIC TOOTH CLUTCHES					

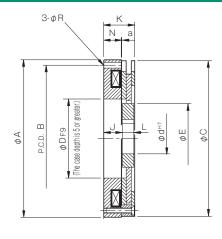
BRAKE MOTORS

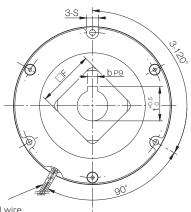
POWER SUPPLIES

MODELS
BXW
BXR
BXL

вхн

BXL-N


BXR Models Square Hub Type


Specifications (BXR- 🗌 -10)

		Static		Coil (a	t 20℃)		Heat	Lead	wire	Max.	nart	Allowable braking	Total	Armature	Armature		
Model	Size	friction torque Ts [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	resistance class	UL style	Size	rotation speed [min ⁻¹]	moment of inertia J [kg·m ²]	energy rate Ebal [J]	braking energy ET[J]	pull-in time ta [s]	release time tar [s]	Backlash [°]	Mass [kg]
BXR-06-10-005	06	5	24	17.6	0.73	32.7	F	UL1333	AWG20	5000	2.35 × 10 ⁻⁵	500	$2.0 imes 10^5$	0.050	0.020	1.2	0.9
BXR-08-10-012	08	12	24	19.4	0.81	29.7	F	UL1333	AWG20	5000	3.45 × 10⁻⁵	800	$2.0 imes 10^5$	0.080	0.020	1.2	1.2
BXR-10-10-016	10	16	24	21.5	0.90	26.8	F	UL1333	AWG20	5000	1.12 × 10 ⁻⁴	1500	$2.2 imes 10^6$	0.110	0.050	0.9	1.3
BXR-12-10-030	12	30	24	23.7	0.99	24.3	F	UL1333	AWG20	5000	1.88 × 10 ⁻⁴	1500	$2.5 imes10^{6}$	0.120	0.030	0.8	2.3
BXR-14-10-038	14	38	24	31.0	1.29	18.6	F	UL1333	AWG20	3600	4.22×10^{-4}	1800	$3.0 imes10^6$	0.120	0.030	0.5	3.0
BXR-16-10-055	16	55	24	19.0	0.79	30.3	F	UL1333	AWG20	3600	7.10 × 10 ⁻⁴	2000	$3.0 imes10^6$	0.220	0.100	0.5	3.6

* The armature pull-in time and armature release time are taken during DC switching. * Backlash is the value between the rotor and rotor hub.

Dimension (BXR- -10)

Lead wire length: 400 *The lead wire extraction position for size 14° is 60°.

Unit [mm]

																Unit [initi]		
		Rad	ial directio	on dimens	ions			Axial direction dimentions						Bore diameter				
Α	В	с	D	E	F	R	S	J	L	N	К	а	d	b	t	d max		
83.5	76	82	47	42	35	4.5	9	17.0	7	14.7	25.0	0.10	20	6	22.5	25		
93.5	85	92	49	42	35	4.5	10	19.0	7	15.7	27.0	0.10	20	6	22.5	25		
123.5	115	122	62	55	45	4.5	9.5	14.6	9	13.7	24.3	0.10	24	8	27	28		
137.5	130	136	65	62	50	4.5	12	15.4	9	12.5	25.0	0.15	24	8	27	30		
167.5	158	166	80	74	60	5.5	12	16.0	9	12.0	25.0	0.15	28	8	31	38		
185	175	184	100	86	65	5.5	12.5	21.3	11.5	19.4	32.8	0.20	28	8	31	45		
	83.5 93.5 123.5 137.5 167.5	83.5 76 93.5 85 123.5 115 137.5 130 167.5 158	A B C 83.5 76 82 93.5 85 92 123.5 115 122 137.5 130 136 167.5 158 166	A B C D 83.5 76 82 47 93.5 85 92 49 123.5 115 122 62 137.5 130 136 65 167.5 158 166 80	A B C D E 83.5 76 82 47 42 93.5 85 92 49 42 123.5 115 122 62 55 137.5 130 136 65 62 167.5 158 166 80 74	83.5 76 82 47 42 35 93.5 85 92 49 42 35 123.5 115 122 62 55 45 137.5 130 136 65 62 50 167.5 158 166 80 74 60	A B C D E F R 83.5 76 82 47 42 35 4.5 93.5 85 92 49 42 35 4.5 123.5 115 122 62 55 45 4.5 137.5 130 136 65 62 50 4.5 167.5 158 166 80 74 60 5.5	A B C D E F R S 83.5 76 82 47 42 35 4.5 9 93.5 85 92 49 42 35 4.5 10 123.5 115 122 62 55 45 4.5 9.5 137.5 130 136 65 62 50 4.5 12 167.5 158 166 80 74 60 5.5 12	A B C D E F R S J 83.5 76 82 47 42 35 4.5 9 17.0 93.5 85 92 49 42 35 4.5 10 19.0 123.5 115 122 62 55 45 4.5 9.5 14.6 137.5 130 136 65 62 50 4.5 122 15.4 167.5 158 166 80 74 60 5.5 12 16.0	A B C D E F R S J L 83.5 76 82 47 42 35 4.5 9 17.0 7 93.5 85 92 49 42 35 4.5 10 19.0 7 123.5 115 122 62 55 45 4.5 9.5 14.6 9 137.5 130 136 65 62 50 4.5 12 15.4 9 167.5 158 166 80 74 60 5.5 12 16.0 9	A B C D E F R S J L N 83.5 76 82 47 42 35 4.5 9 17.0 7 14.7 93.5 85 92 49 42 35 4.5 9 17.0 7 15.7 123.5 115 122 62 55 45 4.5 9.5 14.6 9 13.7 137.5 130 136 65 62 50 4.5 12 15.4 9 12.5 167.5 158 166 80 74 60 5.5 12 16.0 9 12.5	A B C D E F R S J L N K 83.5 76 82 47 42 35 4.5 9 17.0 7 14.7 25.0 93.5 85 92 49 42 35 4.5 9 17.0 7 15.7 27.0 123.5 115 122 62 55 45 4.5 9.5 14.6 9 13.7 24.3 137.5 130 136 65 62 50 4.5 12 15.4 9 12.5 25.0 167.5 158 166 80 74 60 5.5 12 16.0 9 12.0 25.0	A B C D E F R S J L N K a 83.5 76 82 47 42 35 4.5 9 17.0 7 14.7 25.0 0.10 93.5 85 92 49 42 35 4.5 9 17.0 7 14.7 25.0 0.10 93.5 85 92 49 42 35 4.5 10 19.0 7 15.7 27.0 0.10 123.5 115 122 62 55 45 4.5 9.5 14.6 9 13.7 24.3 0.10 137.5 130 136 65 62 50 4.5 12 15.4 9 12.5 25.0 0.15 167.5 158 166 80 74 60 5.5 12 16.0 9 12.0 25.0 0.15	A B C D E F R S J L N K a d 83.5 76 82 47 42 35 4.5 9 17.0 7 14.7 25.0 0.10 20 93.5 85 92 49 42 35 4.5 9 17.0 7 15.7 27.0 0.10 20 93.5 85 92 49 42 35 4.5 10 19.0 7 15.7 27.0 0.10 20 123.5 115 122 62 55 45 4.5 9.5 14.6 9 13.7 24.3 0.10 24 137.5 130 136 65 62 50 4.5 12 15.4 9 12.5 25.0 0.15 24 167.5 158 166 80 74 60 5.5 12 16.0	A B C D E F R S J L N K a d b 83.5 76 82 47 42 35 4.5 9 17.0 7 14.7 25.0 0.10 20 6 93.5 85 92 49 42 35 4.5 10 19.0 7 15.7 27.0 0.10 20 6 123.5 115 122 62 55 45 4.5 9.5 14.6 9 13.7 24.3 0.10 24 8 137.5 130 136 65 62 50 4.5 12 15.4 9 12.5 25.0 0.15 24 8 137.5 130 136 65 62 50 12 16.0 9 12.0 25.0 0.15 24 8 167.5 158 166 80 74 <th>A B C D E F R S J L N K a d b t 83.5 76 82 47 42 35 4.5 9 17.0 7 14.7 25.0 0.10 20 6 22.5 93.5 85 92 49 42 35 4.5 100 19.0 7 15.7 27.0 0.10 20 6 22.5 123.5 115 122 62 55 45 4.5 9.5 14.6 9 13.7 24.3 0.10 24 8 27 137.5 130 136 65 62 50 4.5 12 15.4 9 12.5 25.0 0.15 24 8 27 137.5 130 136 65 62 50 4.5 12 15.4 9 12.5 25.0 0.15 24 8</th>	A B C D E F R S J L N K a d b t 83.5 76 82 47 42 35 4.5 9 17.0 7 14.7 25.0 0.10 20 6 22.5 93.5 85 92 49 42 35 4.5 100 19.0 7 15.7 27.0 0.10 20 6 22.5 123.5 115 122 62 55 45 4.5 9.5 14.6 9 13.7 24.3 0.10 24 8 27 137.5 130 136 65 62 50 4.5 12 15.4 9 12.5 25.0 0.15 24 8 27 137.5 130 136 65 62 50 4.5 12 15.4 9 12.5 25.0 0.15 24 8		

How to Place an Order

BXR-14-10-038-24V-28DIN

* Contact Miki Pulley for details on bore diameter d specifications not given in the table

Web code

C018

ELECTROMAGNETIC **CLUTCHES & BRAKES**

SERIES

ELECTROMAGNETIC-ACTUATED MICRO **CLUTCHES & BRAKES**

FI FCTROMAGNETIC-ACTUATED **CLUTCHES & BRAKES** ELECTROMAGNETIC **CLUTCH & BRAKE**

UNITS

BRAKE

SPRING-ACTUATED

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS вхw

BXR

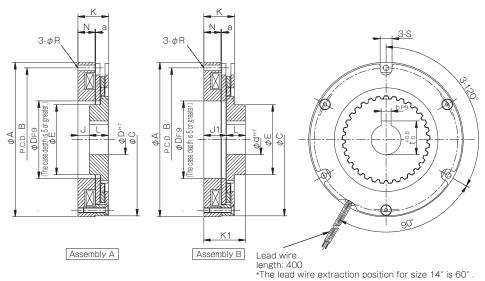
BXL

BXH

BXL-N

Unit [mm]

BXR Models Spline Hub Type


Specifications (BXR- 🗌 -20)

	Static Coil (at 20°C) Lead wire		wire	Max.	Rotating	Allowable braking			Armature								
Model	Size	friction torque Ts [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	resistance class	UL style	Size	rotation speed [min ⁻¹]	part moment of inertia J [kg⋅m²]	energy rate Eba l [J]	braking energy ET[J]	pull-in time ta [s]	release time tar [s]	Backlash [°]	Mass [kg]
BXR-06-20-005	06	5	24	17.6	0.73	32.7	F	UL1333	AWG20	5000	$3.43 imes 10^{-5}$	500	$2.0 imes 10^5$	0.050	0.020	0.5	1.0
BXR-08-20-012	08	12	24	19.4	0.81	29.7	F	UL1333	AWG20	5000	$6.75 imes 10^{-5}$	800	$2.0 imes 10^5$	0.080	0.020	0.4	1.3
BXR-10-20-016	10	16	24	21.5	0.90	26.8	F	UL1333	AWG20	5000	2.32×10^{-4}	1500	$2.2 imes 10^6$	0.110	0.050	0.3	1.5
BXR-12-20-030	12	30	24	23.7	0.99	24.3	F	UL1333	AWG20	5000	3.02×10^{-4}	1500	$2.5 imes10^6$	0.120	0.030	0.3	2.5
BXR-14-20-038	14	38	24	31.0	1.29	18.6	F	UL1333	AWG20	3600	9.41 × 10 ⁻⁴	1800	$3.0 imes10^6$	0.120	0.030	0.2	3.4
BXR-16-20-055	16	55	24	19.0	0.79	30.3	F	UL1333	AWG20	3600	15.2 × 10 ⁻⁴	2000	$3.0 imes10^6$	0.220	0.100	0.2	4.0

* The armature pull-in time and armature release time are taken during DC switching.

* Backlash is the value between the rotor and rotor hub.

Dimension (BXR- 🗌 -20)

Size			Radial di	rection di	mensions					Axial dir		Bore diameter						
3120	Α	В	C	D	E	R	S	J	J1	L	Ν	К	K1	а	d	b	t	d max
06	83.5	76	82	47	36	4.5	9	10.5	18	12.5	14.7	25.0	30.5	0.10	20	6	22.5	25
08	93.5	85	92	49	42	4.5	10	11.5	20	13.5	15.7	27.0	33.5	0.10	20	б	22.5	30
10	123.5	115	122	62	56	4.5	9.5	9	18	15	13.7	24.3	33	0.10	24	8	27	40
12	137.5	130	136	65	61	4.5	12	8.7	17.7	15	12.5	25.0	32.7	0.15	24	8	27	45
14	167.5	158	166	80	75	5.5	12	7.2	17.2	16	12.0	25.0	33.2	0.15	28	8	31	55
16	185	175	184	100	82	5.5	12.5	13.6	24.6	18	19.4	32.8	42.6	0.20	28	8	31	65

How to Place an Order

BXR-14-20-038-24V-28DIN

Bore diameter (dimensional symbol d) Voltage

Static friction torque [N·m] (Refer to the Specifications table for details on the three-digit code.)

Shape fitting 20: Spline

Size

* Contact Miki Pulley for details on bore diameter d specifications not given in the table.

BXR Models

Items Checked for Design Purposes

Precautions for Handling

Brakes

Most electromagnetic braking systems are made using flexible materials. Be careful when handling such parts and materials as striking or dropping them or applying excessive force could cause them to become damaged or deformed.

Lead Wires

Be careful not to pull excessively on the brake lead wires, bend them at sharp angles, or allow them to hang too low.

Frictional Surface

Since these are dry brakes, they must be used with the frictional surface dry. Keep water and oil off of the frictional surfaces when handling the brakes.

Precautions for Use Environment

These brake units are dry braking systems, meaning that the torque will drop if oil residue, moisture, or other liquids get onto friction surfaces. Lead wires are not oil resistant. Consider using a cover or other protection when using in an environment exposed to oil, cutting oil, etc.

Operating Temperature

The operating temperature range is -10° C to 40° C. If you will use the product at other temperatures, consult Miki Pulley.

Power Supplies

BXR models use commercial AC 100 V or 200 V single phase, full-wave rectified. Select as appropriate for your application. See the table, "Recommended power supplies and circuit protectors," for the power supply devices we recommend.

Power Supply Voltage Fluctuations

Full braking performance may not be guaranteed with extreme changes in power supply voltage. Make sure to keep power supply voltage to within \pm 10% of the rated voltage value.

Air Gap Adjustment

BXR models do not require air gap adjustment. The brake air gap is adjusted when the braking system is shipped from the factory.

Circuit Protectors

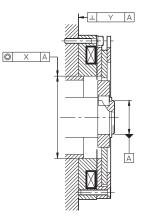
If using a power supply that is not equipped with a circuit protector for DC switching, make sure to connect the recommended circuit protector device in parallel with the brake.

Precautions for Mounting Affixing the Rotor Hub

Affix the rotor hub to the shaft with bolts, snap rings, or the like such that the rotor hub does not touch the armature or stator. Leave at least dimension J on spline hub types, since the rotor hub may contact the armature.

Bolts and Screws

Implement screw-locking measures such as use of an adhesive threadlocking compound to bolts and screws used to install brakes.


Shafts

The shaft tolerance should be h7 class (JIS B 0401).

Accuracy of Brake Attachment Surfaces

Ensure that the concentricity (X) of the centering mark and shaft and the perpendicularity (Y) of the brake mounting surface and shaft do not exceed allowable values.

Size	Concentricity (X)	Perpendicularity (Y)
Size	T.I.R. [mm]	T.I.R. [mm]
06	0.3	0.04
08	0.3	0.05
10	0.4	0.05
12	0.4	0.06
14	0.6	0.06
16	0.6	0.07

Recommended Power Supplies and Circuit Protectors

Recommended power supplies

Input AC power	Brake voltage	Rectification method	Brake size	Recommended power supply model
AC100V 50/60Hz	DC24V	Single-phase, full-wave	06,08,10	BES-20-71-1
AC100V 50/60Hz	DC24V	Single-phase, full-wave	12,14,16	BES-20-72-1
AC200V 50/60Hz	DC24V	Single-phase, full-wave	06,08,10	BES-20-71
AC200V 50/60Hz	DC24V	Single-phase, full-wave	12,14,16	BES-20-72

* A DC power supply such as a battery can also be used to supply the 24 V DC required for the brake voltage.

Circuit protector

Brake voltage	Included varistors
DC24V	NVD07SCD082 or an equivalent

* NVD \Box SCD \Box parts are manufactured by KOA Corporation.

ETP BUSHINGS
ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS & REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA

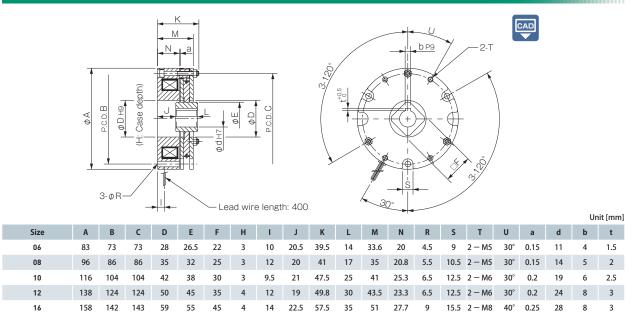
SERIES

	PRING-ACTUATED RAKE
HES AND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
C-ACTUATED CLUTC	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES

BRAKE MOTORS

MODEL	.S									
BXW										
BXR		 			 					•
BXL										
вхн		 								
BXL-N										

BXL Models


Specifications

		Static		Coil (a	t 20°C)		Heat Lead wire		wire	Max.	Rotating part	Allowable	Total	Armature	Armature	
Model	Size	friction torque Ts [N∙m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]		UL style	Size	rotation speed [min ⁻¹]	moment of inertia J [kg∙m²]	braking energy rate Pba ℓ [W]	braking energy ET [J]	pull-in time ta [s]	release time t _{ar} [s]	Mass [kg]
			DC24	15	0.63	38.4	F		AWG22	5000						
BXL-06-10	06	2	DC45	12	0.27	169	F	UL3398			3.75 × 10 ⁻⁵	58.3	$2.0 imes 10^{7}$	0.035	0.020	0.9
			DC90	12	0.13	677	F									
			DC24	22.5	0.94	25.6	F									
BXL-08-10	08	4	DC45	19	0.41	110	F	UL3398	AWG18	5000	6.25 × 10 ⁻⁵	91.7	$3.5 imes 10^{7}$	0.040	0.020	1.3
			DC90	19	0.21	440	F									
			DC24	28	1.14	21.1	F		AWG18							
BXL-10-10	10	8	DC45	25	0.54	83.0	F	UL3398		4000	$13.75 imes 10^{-5}$	108.3	$6.2 imes 10^{7}$	0.050	0.025	2.3
			DC90	25	0.27	331	F									
BXL-12-10	12	16	DC24	35	1.46	16.2	F	111 2200	AWG18	3600	33.75 × 10⁻⁵	133.3	9.0 × 107	0.070	0.030	3.4
BAL-12-10	12	10	DC90	30	0.33	271	F	UL3390	AWGIO	3000	55.75 × 10 -	155.5	9.0 × 10	0.070	0.030	5.4
BXL-16-10	16	22	DC24	39	1.64	14.6	F	111 3308	AWG18	3000	7.35 × 10 ^{−4}	183.3	11.4 × 10 ⁷	⁷ 0.100	0.035	5.4
DAC-10-10	10	22	DC90	39	0.43	207	F	023390	70010	5000	1.55 / 10	.03.3	11.7 \ 10	0.100	0.000	5.4

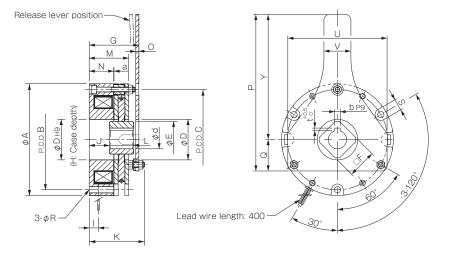
* The armature pull-in time and armature release time are taken during DC switching.

* See the operating characteristics page for the armature pull-in time and release time during AC-side switching (half-wave rectified).

Dimensions

How to Place an Order	BXL-06-10G 24V	<u>11</u> DIN
	Size Option number 10: Standard	Bore diameter (dimensional symbol d) Voltage (Specifications table)

*Contact Miki Pulley for assistance with bore diameters, d, not listed in the Dimensions tales and voltages not listed in the Specifications table.


Options

Made to Order

Release Lever

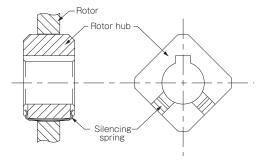
Option No.: 12

In addition to the manual release tap of the standard product, we also offer an optional manual release lever. See the dimensions table below for the dimensions of brakes with release levers. Other specifications are the same as the standard specifications.

Model	Α	В	С	D	Е	F	G	н	1	J	К	L	М	Ν	0	Р	Q	R	Υ	U	۷	S	а	d	b	t
BXL-06-12	83	73	73	28	26.5	22	42.4	3	10	20.5	49.5	14	33.7	20	2.6	88	24	4.5	64	73	16	9	0.15	11	4	1.5
BXL-08-12	96	86	86	35	32	25	44	3	12	20	51	17	35	20.8	2.9	122	27	5.5	95	85	20	10.5	0.15	14	5	2
BXL-10-12	116	104	104	42	38	30	51.2	3	9.5	21	57.5	25	41	25.3	3.2	162.5	32.5	6.5	130	103	28	12.5	0.2	19	6	2.5
BXL-12-12	138	124	124	50	45	35	56.4	4	12	19	64.8	30	43.5	23.3	5	200	40	6.5	160	121	36	12.5	0.2	24	8	3
BXI -16-12	158	142	143	59	55	45	64.9	4	14	22.5	72.5	35	51	27.7	6	230	44	9	186	140	36	15.5	0.25	28	8	3

Quiet Mechanism (Silencing Spring)

Option No.: S1


There is a extremely small structural backlash (see figure on the right) between the rotor and the rotor hub. In applications that are prone to microvibrations of the drive shaft such as single-phase motors, this backlash may produce rattling (banging). The silencing spring for the rotor hub reduces this rattling.

Quiet Mechanism (Pull-in Noise Reduction Mechanism)

Option No.: S2

When the brake is energized, a magnetic circuit is formed, and the armature is pulled to the stator by that magnetic force. At that time, the armature touches the magnetic pole of the stator and a noise is produced. This sound (pull-in noise) is reduced by putting shock absorbing material in the stator's magnetic pole part.

In option S2, in addition to the pull-in noise reduction mechanism, the silencing spring (option S1) is also supplemented.

List of Option Numbers

			mechanism
No release lever	10	1051	1052
Has release lever	12	1251	1252

– Option no.

BXL-06-12S1G 24V 11DIN

Web code

ELECTROMAGNETIC **CLUTCHES & BRAKES**

SERIES

Unit [mm]

	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
	ELECTROMAGNETIC CLUTCH & BRAKE
RAKES	UNITS
	UNITS PRING-ACTUATED RAKE
BI	PRING-ACTUATED

POWER SUPPLIES

MODELS								
BXW								
BXR								
BXL								
вхн								
BXL-N								

BXL Models

Items Checked for Design Purposes

Precautions for Handling

Brakes

Most electromagnetic braking systems are made using flexible materials. Be careful when handling such parts and materials as striking or dropping them or applying excessive force could cause them to become damaged or deformed.

Lead Wires

Be careful not to pull excessively on the brake lead wires, bend them at sharp angles, or allow them to hang too low.

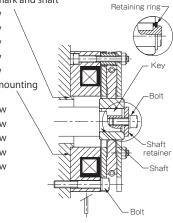
Precautions for Mounting

Affixing the Rotor Hub

Affix the rotor hub to the shaft with bolts, snap rings, or the like such that the rotor hub does not touch the armature or stator.

Bolts and Screws

Implement screw-locking measures such as use of an adhesive thread-locking compound to bolts and screws used to install brakes.


Shafts

The shaft tolerance should be h6 or js6 class (JIS B 0401).

Accuracy of Brake Attachment Surfaces

Ensure that the concentricity of the centering mark and shaft and the perpendicularity of the brake mounting surface and shaft do not exceed the following allowable values.

- Concentricity of centering mark and shaft
 - BXL-06: 0.4 T.I.R. or below BXL-08: 0.4 T.I.R. or below BXL-10: 0.4 T.I.R. or below BXL-12: 0.6 T.I.R. or below BXL-16: 0.6 T.I.R. or below
- Perpendicularity of stator mounting surface BXL-06: 0.04 T.I.R. or below BXL-08: 0.05 T.I.R. or below BXL-10: 0.05 T.I.R. or below BXL-12: 0.06 T.I.R. or below BXL-16: 0.07 T.I.R. or below

Precautions for Use

Environment

These brake units are dry braking systems, meaning that the torque will drop if oil residue, moisture, or other liquids get onto friction surfaces. Lead wires are not oil resistant. Consider using a cover or other protection when using in an environment exposed to oil, cutting oil, etc.

Power Supply Voltage Fluctuations

Full braking performance may not be guaranteed with extreme changes in power supply voltage. Make sure to keep power supply voltage to within \pm 10% of the rated voltage value.

Operating Temperature

The operating temperature is -10° C to 40° C (no freezing or condensation). If you will use the product at other temperatures, consult Miki Pulley.

Manual Release

BXL models can be released manually.

Alternately tighten screws in two or three of the tap holes on the plate to press the armature.

The screw tips will push against the armature and release it with about a 90° rotation. Do not force the screws in more than that.

Air Gap Adjustment

BXL models do not require air gap adjustment. The brake air gap is adjusted when the braking system is shipped from the factory. When first used, no gap adjustment is needed, so do not rotate the nut.

Initial Torque

The torque may be lower than the indicated value at initial use. In such cases, run it to break in the frictional surface before use.

Circuit Protectors

If using a power supply that is not equipped with a circuit protector for DC switching, make sure to connect the recommended circuit protector device in parallel with the brake.

Recommended Power Supplies and Circuit Protectors

Recommended power supplies

Input AC power	Brake voltage	Rectification method	Brake size	Recommended power supply model
AC100V 50/60Hz	DC24V	Single-phase, full-wave	06,08,10	BES-20-71-1
AC100V 50/60Hz	DC24V	Single-phase, full-wave	12,16	BES-20-72-1
AC100V 50/60Hz	DC45V	Single-phase, half-wave	06,08,10	BEW-1R
AC100V 50/60Hz	DC90V	Single-phase, full-wave	06,08,10,12,16	BEW-1R
AC200V 50/60Hz	DC24V	Single-phase, full-wave	06,08,10	BES-20-71
AC200V 50/60Hz	DC24V	Single-phase, full-wave	12,16	BES-20-72
AC200V 50/60Hz	DC90V	Single-phase, half-wave	06,08,10,12,16	BEW-2R

* A DC power supply such as a battery can also be used to supply the 24 V DC required for the brake voltage.

Recommended circuit protectors

Input voltage	Brake voltage	Rectification method	Recommended circuit protector (varistor)
DC24V	DC24V	-	NVD07SCD082 or an equivalent
AC100V 50/60Hz	DC45V	Single-phase, half-wave	NVD07SCD220 or an equivalent
AC100V 50/60Hz	DC90V	Single-phase, full-wave	NVD07SCD220 or an equivalent
AC200V 50/60Hz	DC90V	Single-phase, half-wave	NVD07SCD470 or an equivalent

* NVD SCD parts are manufactured by KOA Corporation.
* DC24V indicates a product recommended with a stepdown transformer or the like.

Included varistors

Brake voltage Included varistors DC24V NVD075CD082 or an equivalent DC45V No varistor provided DC90V No varistor provided

COU	IPL	GS	

ETP BUSHINGS ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS LINEAR SHAFT DRIVES

ROSTA

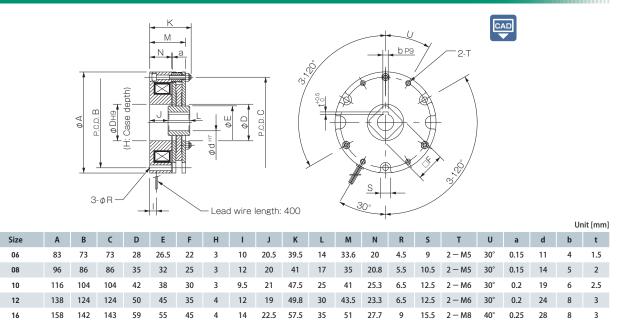
SERIES

ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES					
IC-ACTUATED CLUT	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES					
CHES AND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS					
	SPRING-ACTUATED BRAKE					

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

MODELS						
BXW						
BXR						
BXL						
вхн						
BXL-N						


BXH Models

Specifications Coil (at 20°C) Static friction Lead wire Max. Rotating part Allowable Total Heat Armature Armature rotation moment of braking braking Mass Size Model esistance pull-in time release time Voltage Wattage Current UL torque T₅ [N·m] Resistance speed [min⁻¹] energy rate Eba ℓ [J] energy ET [J] inertia [kg] Size class ta [S] tar [S] [V] [W] [A] [Ω] style J [kg·m²] DC24 15 0.63 38.4 F 0.020 BXH-06-10 06 4 DC45 12 0.27 169 F UL3398 AWG22 5000 3.25×10^{-5} 700 2.0×10^{6} 0.040 0.9 DC90 12 0.13 677 F DC24 22.5 0.94 25.6 F 5.75 × 10⁻⁵ BXH-08-10 08 8 DC45 19 0.41 110 F UL3398 AWG18 5000 1100 3.5×10^{6} 0.045 0.020 1.3 DC90 19 0.21 440 F DC24 28 1.14 21.1 F BXH-10-10 10 16 DC45 25 0.54 83 F UL3398 AWG18 4000 1.30×10^{-4} 1300 $6.2 imes 10^{6}$ 0.070 0.025 2.3 DC90 25 0.27 331 F DC24 35 1.46 16.2 F BXH-12-10 12 32 UL3398 AWG18 3600 3.20×10^{-4} 1600 9.0×10^{6} 0.090 0.025 3.4 DC90 30 0.33 271 F DC24 39 1.64 14.6 F UL3398 AWG18 3000 6.93×10^{-4} 2200 11.4×10^{6} 0.125 0.030 5.4 BXH-16-10 16 44 DC90 39 0.43 207 F

* The armature pull-in time and armature release time are taken during DC switching.

* See the operating characteristics page for the armature pull-in time and release time during AC-side switching (half-wave rectified).

Dimensions

How to Place an					
Order					

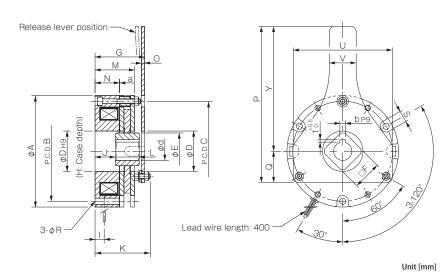
BXH-<u>06-10</u>G <u>24V</u> <u>11</u>DIN

Bore diameter (dimensional symbol d) Voltage (Specifications table)

Option number 10: Standard

Size

*Contact Miki Pulley for assistance with bore diameters, d, not listed in the Dimensions tales and voltages not listed in the Specifications table.

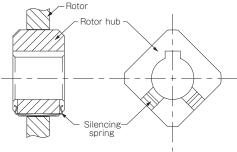

Options

Made to Order

Release Lever

Option No.: 12

In addition to the manual release tap of the standard product, we also offer an optional manual release lever. See the dimensions table below for the dimensions of brakes with release levers. Other specifications are the same as the standard specifications.



Model	А	В	С	D	Е	F	G	н	1	J	к	L	М	Ν	0	Р	Q	R	Y	U	۷	S	а	d	b	t
BXH-06-12	83	73	73	28	26.5	22	42.8	3	10	20.5	49.5	14	33.7	20	2.9	105	24	4.5	81	73	20	9	0.15	11	4	1.5
BXH-08-12	96	86	86	35	32	25	45.4	3	12	20	56	17	35.3	20.8	4	122	27	5.5	95	85	20	10.5	0.2	14	5	2
BXH-10-12	116	104	104	42	38	30	53.9	3	9.5	21	63	25	42.2	25.3	4.5	162.5	32.5	6.5	130	103	28	12.5	0.25	19	6	2.5
BXH-12-12	138	124	124	50	45	35	58.3	4	12	19	70	30	45.4	23.3	5	200	40	6.5	160	121	36	12.5	0.25	24	8	3
BXH-16-12	158	142	143	59	55	45	66.5	4	14	22.5	72.5	35	53.3	27.7	6	230	44	9	186	140	36	15.5	0.25	28	8	3

Quiet Mechanism (Silencing Spring)

Option No.: S1

There is a extremely small structural backlash (see figure on the right) between the rotor and the rotor hub. In applications that are prone to microvibrations of the drive shaft such as single-phase motors, this backlash may produce rattling (banging). The silencing spring for the rotor hub reduces this rattling.

ELECTROMAGNETIC **CLUTCHES & BRAKES**

SERIES

	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES				
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES				
	ELECTROMAGNETIC CLUTCH & BRAKE UNITS				
SPRING-ACTUATED BRAKE					

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

List of Option Numbers

Description of options	No quiet mechanism	With silencing spring					
No release lever	10	1051					
Has release lever	12	1251					
* Option 10 uses standard specifications.							

BXH-06-12S1G 24V 11DIN

-Option no.

MODELS	
BXW	
BXR	
BXL	
вхн	
BXL-N	

BXH Models

Items Checked for Design Purposes

Precautions for Handling

Brakes

Most electromagnetic braking systems are made using flexible materials. Be careful when handling such parts and materials as striking or dropping them or applying excessive force could cause them to become damaged or deformed.

Lead Wires

Be careful not to pull excessively on the brake lead wires, bend them at sharp angles, or allow them to hang too low.

Precautions for Mounting

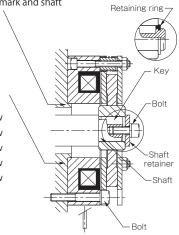
Affixing the Rotor Hub

Affix the rotor hub to the shaft with bolts, snap rings, or the like such that the rotor hub does not touch the armature or stator.

Bolts and Screws

Implement screw-locking measures such as use of an adhesive threadlocking compound to bolts and screws used to install brakes.

Shafts


The shaft tolerance should be h6 or js6 class (JIS B 0401).

Accuracy of Brake Attachment Surfaces

Ensure that the concentricity of the centering mark and shaft and the perpendicularity of the brake mounting surface and shaft do not exceed the following allowable values.

 Concentricity of centering mark and shaft BXH-06: 0.4 T.I.R. or below BXH-08: 0.4 T.I.R. or below BXH-10: 0.4 T.I.R. or below BXH-12: 0.6 T.I.R. or below BXH-16: 0.6 T.I.R. or below
 Perpendicularity of stator

mounting surface BXH-06: 0.04 T.I.R. or below BXH-08: 0.05 T.I.R. or below BXH-10: 0.05 T.I.R. or below BXH-12: 0.06 T.I.R. or below BXH-16: 0.07 T.I.R. or below

Precautions for Use Dedicated for Holding

These brakes are dedicated holding brakes. Do not use them for ordinary braking, except for emergency braking in the event of a power outage or the like.

Environment

These brake units are dry braking systems, meaning that the torque will drop if oil residue, moisture, or other liquids get onto friction surfaces. Lead wires are not oil resistant. Consider using a cover or other protection when using in an environment exposed to oil, cutting oil, etc.

Power Supply Voltage Fluctuations

Full braking performance may not be guaranteed with extreme changes in power supply voltage. Make sure to keep power supply voltage to within \pm 10% of the rated voltage value.

Operating Temperature

The operating temperature is -10° C to 40° C (no freezing or condensation). If you will use the product at other temperatures, consult Miki Pulley.

Manual Release

BXH models can be released manually.

Alternately tighten screws in two or three of the tap holes on the plate to press the armature.

The screw tips will push against the armature and release it with about a 90° rotation. Do not force the screws in more than that.

Air Gap Adjustment

BXH models do not require air gap adjustment. The brake air gap is adjusted when the braking system is shipped from the factory. When first used, no gap adjustment is needed, so do not rotate the nut.

Circuit Protectors

If using a power supply that is not equipped with a circuit protector for DC switching, make sure to connect the recommended circuit protector device in parallel with the brake.

Recommended Power Supplies and Circuit Protectors

Recommended power supplies

Input AC power	Brake voltage	Rectification method	Brake size	Recommended power supply model
AC100V 50/60Hz	DC24V	Single-phase, full-wave	06,08,10	BES-20-71-1
AC100V 50/60Hz	DC24V	Single-phase, full-wave	12,16	BES-20-72-1
AC100V 50/60Hz	DC45V	Single-phase, half-wave	06,08,10	BEW-1R
AC100V 50/60Hz	DC90V	Single-phase, full-wave	06,08,10,12,16	BEW-1R
AC200V 50/60Hz	DC24V	Single-phase, full-wave	06,08,10	BES-20-71
AC200V 50/60Hz	DC24V	Single-phase, full-wave	12,16	BES-20-72
AC200V 50/60Hz	DC90V	Single-phase, half-wave	06,08,10,12,16	BEW-2R

* A DC power supply such as a battery can also be used to supply the 24 V DC required for the brake voltage.

Recommended circuit protectors

Input voltage	Brake voltage	Rectification method	Recommended circuit protector (varistor)
DC24V	DC24V	-	NVD07SCD082 or an equivalent
AC100V 50/60Hz	DC45V	Single-phase, half-wave	NVD07SCD220 or an equivalent
AC100V 50/60Hz	DC90V	Single-phase, full-wave	NVD07SCD220 or an equivalent
AC200V 50/60Hz	DC90V	Single-phase, half-wave	NVD07SCD470 or an equivalent

* NVD
SCD
parts are manufactured by KOA Corporation.

* DC24V indicates a product recommended with a stepdown transformer or the like.

Included varistors

Brake voltage	Included varistors
DC24V	NVD07SCD082 or an equivalent
DC45V	No varistor provided
DC90V	No varistor provided

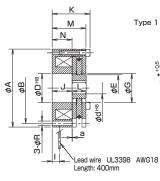
SERIES

ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
IC-ACTUATED CLUT	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
CHES AND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
	PRING-ACTUATED RAKE

ELECTROMAGNETIC TOOTH CLUTCHES

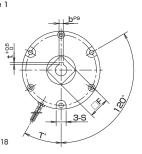
BRAKE MOTORS

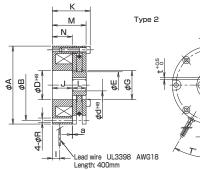
MODELS	;	
BXW		
BXR		
BXL		
вхн		
BXL-N		

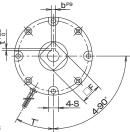

BXL-N Models

Specifications

		Static		Coil (a	t 20℃)		Heat	Max.	Rotating part	Allowable	Total	Armature	Armature	Applicable	
Model	Size	friction torque T₅[N•m]		Wattage [W]	Current [A]	Resistance [Ω]		rotation speed [min ⁻¹]	d inertia	braking energy rate Pbal [W]	braking energy Et [J]	pull-in time ta [s]	release time t _{ar} [s]	motor output (Reference) Four poles [kW]	Mass [kg]
			24	19.0	0.793	30.3	F								
BXL-08-10N-002	08	2	99	19.0	0.192	515.8	F	3600	6.3 × 10 ⁻⁵	60.0	$5.0 imes 10^{7}$	0.030	0.050	0.1/0.2	1.4
			171	19.0	0.111	1539	F								
			24	19.0	0.793	30.3	F								
BXL-08-10N-004	08	4	99	19.0	0.192	515.8	F	3600	6.3 × 10 ⁻⁵	60.0	5.0 × 10 ⁷	0.040	0.040	0.4	1.4
			171	19.0	0.111	1539	F								
			24	28.0	1.166	20.6	F								
BXL-10-10N-008	10	8	99	28.0	0.283	350.0	F	3600	13.8 × 10 ⁻⁵	5 70.0	8.0 × 10 ⁷	0.050	0.050	0.75	2.7
			171	28.0	0.164	1044	F								
			24	28.0	1.166	20.6	F								
BXL-10-10N-015	10	15	99	28.0	0.283	350.0	F	3600	13.8 × 10 ⁻⁵	70.0	8.0 × 10 ⁷	0.070	0.030	1.5	2.7
			171	28.0	0.164	1044	F								
BXL-12-10N-022	12	22	24 99	35.0	1.460 0.353	16.4 280.1	F	3600	33.8 × 10 ⁻⁵	90.0	12.0 × 10 ⁷	0.080	0.060	2.2	4.7
BXL-12-10N-022	12	22	99 171	35.0 35.0	0.353	280.1 835.5	F	3600	33.8 × 10 ⁻³	90.0	12.0 × 10 ⁷	0.080	0.060	2.2	4./
			24	35.0	1.460	855.5 16.4	F								
BXL-12-10N-030	12	30	24 99	35.0	0.353	280.1	F	3600	33.8 × 10⁻⁵	90.0	12.0×10^{7}	0.100	0.030	3.0	4.7
DAL-12-1014-050	12	50	171	35.0	0.205	835.5	F	5000	55.0 × 10	50.0	12.0 × 10	0.100	0.050	5.0	ч./
			24	42.0	1.753	13.7	F								
BXL-16-10N-040	16	40	99	42.0	0.424	233.3	F	1800	73.5 × 10⁻⁵	120.0	16.0×10^{7}	0.100	0.070	3.7	6.3
			171	42.0	0.246	696.1	F								
			24	55.0	2.294	10.5	F								
BXL-16-10N-060	16	60	99	55.0	0.556	178.1	F	1800	74.6 × 10 ⁻⁵	150.0	16.0 × 10 ⁷	0.100	0.050	5.5	6.7
			171	55.0	0.322	531.6	F								
			24	55.0	2.294	10.5	F								
BXL-16-10N-080	16	80	99	55.0	0.556	178.1	F	1800	74.6 × 10 ⁻⁵	150.0	16.0 × 10 ⁷	0.100	0.030	7.5	6.7
			171	55.0	0.322	531.6	F								


*The armature pull-in time and armature release time are taken during DC switching.


Dimensions



How to Place an

Order

																			U	nit [mm]
Model	Туре	Α	В	D	Е	F	G	1	J	К	L	М	Ν	R	S	Т	а	d	b	t
BXL-08-10N-002	1	94	85	35	32	25	35	9	24	45.7	17	40.7	24	5.5	12	30	0.3	11	4	1.5
BXL-08-10N-004	1	94	85	35	32	25	35	9	24	45.7	17	40.7	24	5.5	12	30	0.3	14	5	2
BXL-10-10N-008	1	124	110	40	38	30	42	10	22	48.7	25	42.7	26	6.5	12	30	0.3	18	6	2.5
BXL-10-10N-015	1	124	110	40	38	30	42	10	22	48.7	25	42.7	26	6.5	12	30	0.3	20	6	2.5
BXL-12-10N-022	1	150	130	49	45	35	50	18	25	57.1	30	51.1	29	6.5	14	30	0.3	24	8	3
BXL-12-10N-030	1	150	130	49	45	35	50	18	25	57.1	30	51.1	29	6.5	14	30	0.3	24	8	3
BXL-16-10N-040	1	165	150	62	55	45	62	18	24	63.1	35	55.1	28	9	15	30	0.3	28	8	3
BXL-16-10N-060	2	165	150	64	61	50	64	20	29	68.1	35	60.1	33	9	15	15	0.3	37	10	3.5
BXL-16-10N-080	2	165	150	64	61	50	64	20	29	68.1	35	60.1	33	9	15	15	0.3	37	10	3.5

BXL-08-10N-004-24V-11

Bore diameter (dimensional symbol d)
 Voltage (refer to the specifications table)

Static torque (refer to the specifications table)

* Contact Miki Pulley for assistance with bore diameters, d, not listed in the Dimensions tales and voltages not listed in the Specifications table,

Options

Plate Installation

Standard installation is performed using stator installation, but a plate installation specification is also available as an option. Please contact Miki Pulley for assistance if desiring to use plate installation.

Quiet Mechanism

There is a slight backlash between the rotor and the rotor hub. The armature may also strike the surface of the magnetic poles on the stator when electricity flows, generating a noise. There is a quiet mechanism available that works to suppress such clattering noises as well as operating noise. Please contact Miki Pulley for details.

Items Checked for Design Purposes

Precautions for Handling

Brakes

Most electromagnetic braking systems are made using flexible materials. Be careful when handling such parts and materials as striking or dropping them or applying excessive force could cause them to become damaged or deformed.

Lead Wires

Be careful not to pull excessively on the brake lead wires, bend them at sharp angles, or allow them to hang too low.

Frictional Surface

Since these are dry brakes, they must be used with the frictional surface dry. Keep water and oil off of the frictional surfaces when handling the brakes.

Precautions for Use

Environment

These brake units are dry braking systems, meaning that the torque will drop if oil residue, moisture, or other liquids get onto friction surfaces. Lead wires are not oil resistant. Consider using a cover or other protection when using in an environment exposed to oil, cutting oil, etc.

Operating Temperature

The operating temperature is from 0℃ to 40℃ (no freezing or condensation). If you will use the product at other temperatures, consult Miki Pulley.

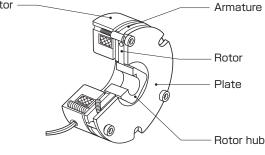
Power Supplies

BXL-N models use commercial AC 220 V or 380 V single phase, half-wave rectified. Select as appropriate for your application.

Power Supply Voltage Fluctuations

Full braking performance may not be guaranteed with extreme changes in power supply voltage. Make sure to keep power supply voltage to within \pm 10% of the rated voltage value.

Air Gap Adjustment


BXL-N models do not require air gap adjustment. The brake air gap is adjusted when the braking system is shipped from the factory.

Circuit Protectors

If using a power supply for separate DC switching, make sure to connect the recommended circuit protector device in parallel with the brake.

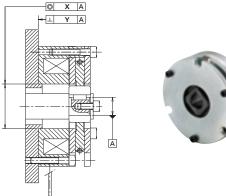
Recommended Power Supplies and Circuit **Protectors**

Stator	

Precautions for Mounting

Precautions for Mounting

Use a bolt or snap ring to lock the rotor hub onto the shaft. Shaft


The shaft tolerance should be h7 class (JIS B 0401).

Bolts and Screws

Implement screw-locking measures such as use of an adhesive thread-locking compound to bolts and screws used to install brakes.

Accuracy of Brake Attachment Surfaces

Ensure that the concentricity (X) of the centering mark and shaft and the perpendicularity (Y) of the brake mounting surface and shaft do not exceed allowable values.

Allowable concentricity and perpendicularity values for the **BXL-N** Models

Size	Concentricity (X)	Perpendicularity (Y)
5120	T.I.R. [mm]	T.I.R. [mm]
08	0.4	0.05
10	0.4	0.05
12	0.6	0.05
16	0.6	0.05

MODELS	
BXW	
BXR	
BXL	
вхн	
BXL-N	-

Model	Rectification method	Frequency [Hz]	Input AC voltage [V]	DC output voltage *1 [V]	Recommended circuit protectors *2 (Varistor)
BEM-2T	Single-phase, half-wave	50/60	AC220	DC99	NVD07SCD220 or an equivalent
BEM-4T	Single-phase, half-wave	50/60	AC380	DC171	NVD14SCD820 or an equivalent

*1 The values given are for when there is electricity flowing to the brake coil. *2 NVD SCD parts are manufactured by KOA Corporation

ETP BUSHINGS

ELECTROMAGNETIC **CLUTCHES & BRAKES**

SERIES

ELECTROMAGNETIC-ACTUATED MICRO CLUTCHES & BRAKES FI FCTROMAGNETIC ACTUATED **CLUTCHES & BRAKES** FI FCTROMAGNETIC **CLUTCH & BRAKE** UNITS SPRING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

Selection Procedure for Brakes for Braking

Consideration of Required Torque to Brake Loads

The sign of load torque T ℓ is minus when the load works in the direction the assists braking and plus when it works in the direction that hinders braking. Ta actual braking time t_{ab} is the time required from the start of braking torq generation until braking is complete. When this is not clearly known at t selection stage, a guideline value is used that factors in service life and the like

To select the appropriate brake size, you must find the torque required for braking T, and then select a size of brake that delivers a greater torque than T.

9550×P

n

 $T_M =$

- Consideration of cases when load conditions are not clearly known
 When load conditions are unclear, assuming that the motor has been selected correctly for the load, the approximate torque can be obtained from the motor output using the following equation.
- Consideration when load conditions can be clearly ascertained

When load conditions can be clearly ascertained, the torque T required for braking can be found using the following equation.

$$= \left(\frac{J \times n}{9.55 \times t_{ab}} \pm T_{\ell}\right) \times K [N \cdot m]$$

 $\times \eta [N \cdot m]$

: Total moment of inertia of load side [kg·m²]

n: Rotation speed [min⁻¹] (ab: Actual braking time [s]

nr: Brake shaft rotation speed [min⁻¹]

 η : Transmission efficiency from motor to brake

ab: Actual braking time [s [ℓ: Load torque [N•m]

Safety factor (see table below)

nat	Load state	Factor
he	Low-inertia/low-frequency constant load	1.5
ue	Ordinary use with normal inertia	2
he	High-inertia/high-frequency load fluctuation	3
2		

P: Motor output [kW]

Provisional Size Selection

Select a brake of a size for which the torque T found in the equation of step 1 satisfies the following equation.

A brake of a size for which torque T found from the equations above satisfies the following equation must be selected.

Tb > T (or Tm) [N•m] Tb: Brake torque [N•m] * For brake torque, treat Ts as equaling Tb. (Ts: Static friction torque from specifications table)

Consideration of Energy

When the load required for braking is sufficiently small, the size can be selected considering only torque T as described above. Given the effects of heat generated by braking, however, the following equation must be used to confirm that the operation frequency per unit time and the total number of operations (service life) meet the required specifications.

Use the following equation to find the energy Eb required for $E_b = \frac{J \times n^2}{182} \times \frac{T_b}{T_b \pm T_{\ell}}$ [J]

The sign of load torque T ℓ is plus when the load works in the direction that assists braking and minus when it works in the direction that hinders braking.

Еь

 Confirm the frequency S of operations that ca be performed per minute

Find the frequency of operations that can be performed per minute using the equation at right to confirm that the desired operation frequency is sufficiently smaller than the value found.

 Confirm the total number of operations (service life)
 Find the total number of operations (service life) using the equation at right, and then check that it meets the desired service life.

n
ed
$$S = \frac{60 \times P_{bal}}{[times/min]} P_{bal}$$
: Allow

Pbal : Allowable braking energy rate [W] Eb : Energy required for one braking operation [J]

$$= \frac{E_{T}}{E_{b}}$$
[times] ET: Total braking energy [J]

4

5

3

Consideration of Braking Time

When there are limits on the time required to decelerate or stop the load, use the equation at right to confirm that the total braking time ttb satisfies requirements.

Here, actual braking time t_{ab} is the time from the start of braking torque generation to the completion of braking. Find it with the following equation.

 $t_{tb} = t_{id} + t_{ar} + t_{ab}$ tar: Armatic

tar: Armature release time [s] tid: Initial delay time [s]

[°]

$$=\frac{J\times n}{9.55\times(T_b\pm T_\ell)} [s$$

The sign of load torque T ℓ is plus when the load works in the direction that assists braking and minus when it works in the direction that hinders braking.

tab

Consideration of Stopping Precision

To confirm stopping precision, find the stopping angle (rotation) using the following equation.

The variation in stopping precision--i.e., stopping precision $\time \theta$ --can be found empirically with the following equation and used as a guide.

$$\theta = 6 \times n \times \left(t_{id} + t_{ar} + \frac{1}{2} t_{ab} \right)$$

$$\Delta \theta = \pm 0.15 \times \theta$$
 [°]

tar: Armature release time [s] tid: Initial delay time [s]

ETP BUSHINGS

CLUTCHES & BRAKES

Selection Procedure for Brakes for Holding

Consideration of Required Torque to Hold Loads

Use the following equation to find the torque T required to hold a load while statio	nary.	
$T=T_{\ell \max} \times K[N \cdot m]$	Load state	Factor
	Low inertia/small load fluctuations	1.5
Tℓ max: Max. load torque [N•m] K: Safety factor (see table at right)	Ordinary use with normal inertia	2
K: Safety factor (see table at right)	High inertia/large load fluctuations	3

Provisional Selection of Size

1

2

3

4

A brake of a size for which torque T found from the equations above satisfies the following equation must be selected.					
T _s > T [N•m]	Ts: Static friction torque of brake [N•m]				

Consideration of Energy

When considering a brake with the objective of holding loads, braking is limited to emergency braking. Use the following equation to find the braking energy E_b for a single operation required for emergency braking. You must confirm that this result is sufficiently smaller than the allowable braking energy $E_{ba} \ell$ of the selected brake. J: Total moment of inertia on load side [kg·m²]

$$E_{b} = \frac{J \times n^{2}}{182} \times \frac{T_{b}}{T_{b} \pm T_{\ell}} \begin{bmatrix} J \end{bmatrix} \begin{bmatrix} J_{c} \\ n_{c} \\ T_{b} \\ T_{\ell} \\ n \end{bmatrix}$$

Rotation speed [min⁻¹] Brake torque [N·m] nax: Max. load torque [N•m]

The sign of maximum load torque T ℓ max is plus when the load works in the direction that assists braking and minus when it works in the direction that hinders braking.

 $E_b \ll E_{ba\,\ell} ~[J]$

When using brakes for both holding and braking and the specification is indicated by allowable braking energy rate $P_{ba}\ell$, check under the following conditions.

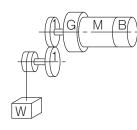
 $E_b \ll 60 \times P_{ba \ell}$ [J]

Consideration of Number of Operations

The total number of braking operations (service life) when performing emergency braking L must be found using the following equation to confirm that required specifications are satisfied.

 $\mathbf{L} = \frac{\mathbf{E}_{\mathsf{T}}}{\mathbf{E}_{\mathsf{b}}} [\mathsf{times}] \quad \mathsf{E}_{\mathsf{T}}: \mathsf{Total braking energy} [\mathsf{J}]$

Note that the frequency of emergency braking will also vary with operating environment; however, it should be about once per minute or better. When the braking energy of a single operation E_b is 70% or more of the allowable braking energy $E_{ba\,\ell}$, however, allow the brake to cool sufficiently after emergency braking before resuming use.


	IVERTERS
LI	NEAR SHAFT DRIVES
	ORQUE LIMITERS
	OSTA
SEF	RIES
FIECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
IC-ACTUATED CLUT	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
CHESANDRRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
	PRING-ACTUATED RAKE
	LECTROMAGNETIC DOTH CLUTCHES
BI	RAKE MOTORS

MODELS	,		
BXW			
BXR			
BXL			
BXH			
BXL-N		 	

BXW/BXR/BXL/BXH Models

Selection Example 1

Braking Brakes Used in Raising Loads

Selection of a brake to brake the load is as follows, as the above figure illustrates.

Motor (brake shaft) rotation speed	n	1800 [min ⁻¹]
Load shaft rotation speed	nı	60 [min ⁻¹]
Moment of inertia of motor-side gear	J1	$1.5 \times 10^{-2} [kg \cdot m^2]$
Moment of inertia of load-side gear	J ₂	$1.5 \times 10^{-2} [kg \cdot m^2]$
Moment of inertia of load-side drum	J3	4.30 [kg⋅m ²]
Moment of inertia of motor with speed reducer	JM	6 × 10 ⁻³ [kg•m ²]
Moment of inertia of load	JA	15.67 [kg⋅m²]
Load-side torque	Т	62.5 [N•m]
Number of braking operations of brake	L	53,000 cycles or more
Brake operating frequency	S	0.1 [cycles/min]

* The number of braking operations and operation frequency treat one ascending operation and one

descending operation together as one cycle. * The number of braking operations of the brake is treated as 6 (operations/h) $\,\times$ 8 (h/day) $\,\times$ 365

(days/year) × 3 (years).

Consideration of Torque

The torque required for braking is calculated from the above specifications, compared to the dynamic friction torque in the catalog, and the appropriate brake size is selected.

- Calculating the inertial moment converted to brake shaft inertial moment J_{B}

We use the following equation to calculate the moment of inertia converted to the brake shaft (motor shaft) moment of inertia $J_{B}[kg\text{-}m^{2}]$. Here, R represents the ratio of the motor rotation speed to the load shaft rotation speed.

$\begin{aligned} J_{B} = J_{M} + (J_{1} + J_{2} + J_{3} + J_{A}) & \times R^{2} \ [kg \cdot m^{2}] \\ J_{B} = 6 \times 10^{-3} + (1.5 \times 10^{-2} + 1.5 \times 10^{-2} + 4.30 + 15.67) \\ & \times (60/1800)^{2} \\ & \Leftrightarrow 2.8 \times 10^{-2} [kg \cdot m^{2}] \end{aligned}$

• Calculating the load torque converted to brake shaft load torque T ℓ We use the following equation to calculate the load torque converted to the brake shaft (motor shaft) load torque T ℓ [N•m]. However, η indicates the transmission efficiency, which is 0.85 in this selection.

Tℓ=R×T/η [N•m] Tℓ=60/1800×62.5/0.85≒2.45 [N•m]

- · Calculating the torque required for braking T
- Use the following equation to calculate the torque required for braking T [N•m].
- Here, the conditions are set as follows.
- * The guideline for actual braking time t_{ab} is 2.0 [s].
- * The sign of load torque TR is minus when ascending because the load works in the direction that assists braking and plus when descending because the load works in the direction that hinders braking.
- braking. * Select a safety factor K of 3.0, based on operating conditions.

Ascending

$$T_{up} = \left(\frac{J_{B} \times n}{9.55 \times t_{ab}} - T_{\ell}\right) \times K$$
$$T_{up} = \left(\frac{2.8 \times 10^{-2} \times 1800}{9.55 \times 2.0} - 2.45\right) \times 3.0 \approx 0.57 [\text{N} \cdot \text{m}]$$

Descending

$$T_{\text{DOWN}} = \left(\frac{J_{\text{B}} \times n}{9.55 \times t_{ab}} + T_{\ell}\right) \times K$$
$$T_{\text{DOWN}} = \left(\frac{2.8 \times 10^{-2} \times 1800}{4.25} + 2.45\right) \times 3.0 \approx 15.3 \text{ [N·m]}$$

Since the result of the above shows that required torque is 15.3 [N·m], check the specifications in the catalog and select size 12 (dynamic

friction torque of 16.0 [N•m]) of the BXL models of brakes for braking.

ETP BUSHINGS

ELECTROMAGNETIC

CLUTCHES & BRAKES

Consideration of Energy

Confirm that the brake selected based on required torque satisfies the required specifications for number of braking operations and braking frequency.

· Calculating the total moment of inertia J

Adding the inertial moment converted to brake shaft inertial moment J_B that was just calculated to the inertial moment of the rotating parts of the provisionally selected BXL-12 (catalog value of 33.75×10^{-5}), we arrive at the total moment of inertia.

$J = 2.8 \times 10^{-2} + 33.75 \times 10^{-5}$ $\approx 2.83 \times 10^{-2} [kg \cdot m^{2}]$

 Calculating the amount of energy required for one braking operation Eb The calculated total moment of inertia is used to calculate the energy required by a single braking operation. Here, the sign of load torque T *i* is plus when ascending because the load works in the direction that assists braking and minus when descending because the load works in the direction that hinders braking.

Ascending

$$E_{bup} = \frac{J \times n^{2}}{182} \times \frac{T_{b}}{T_{b} + T_{\ell}}$$

$$E_{bup} = \frac{2.83 \times 10^{-2} \times 1800^{2}}{182} \times \frac{16.0}{16.0 + 2.45}$$

$$\approx 437 [J]$$

$$E_{bDOWN} = \frac{J \times n^2}{182} \times \frac{T_b}{T_b - T_\ell}$$

$$E_{bDOWN} = \frac{2.83 \times 10^{-2} \times 1800^2}{182} \times \frac{16.0}{16.0 - 2.45}$$

$$\approx 595 [J]$$

Confirm the frequency S of operations that can be performed per minute

Substitute the energy required for a single braking Eb calculated above and the allowable braking energy rate $P_{ba\,\ell}$ for the BXL-12 (catalog value 133.3 W) into the following equation and calculate the frequency S of operations that can be performed per minute.

Ascending

$$S_{up} = \frac{60 \times P_{ba\,\ell}}{E_{bup}}$$
$$S_{up} = \frac{60 \times 133.3}{437}$$
$$\approx 18.3 \text{ [times/min.]}$$

Descending

$$S_{\text{DOWN}} = \frac{60 \times P_{\text{ba}\,\ell}}{E_{\text{bDOWN}}}$$
$$S_{\text{DOWN}} = \frac{60 \times 133.3}{595}$$
$$\approx 13.4 \text{ [times/min.]}$$

The desired operation frequency is sufficiently smaller than the calculated operation frequency, so the specification is satisfied. Note that the braking energy rate (catalog value) used in the calculation is the value under ideal conditions, so the desired operation frequency needs to be sufficiently small.

13.4 [times/min.] >> 0.1 [times/min.]

• Calculating the total number of operations (service life) Substituting in the just-calculated energy required for a single braking Eb and the BXL-12 total frictional energy ET (catalog value of 9.0×10^7 [J]), we arrive at the total number of operations L.

If the energy of a single cycle of ascending and descending $\mathsf{E}\mathsf{b}$ is:

$E_b = E_{bup} + E_{bDOWN}$

E_b=1032[J]

The total number of operations L is:

4 07

$$L = \frac{E_{T}}{E_{b}}$$

$$L = \frac{9.0 \times 10^{7}}{1032}$$

≒ 87209 [cycles]

The desired total number of operations is fewer than the calculated total number of operations (service life), so the specification is satisfied.

87,209 [cycles] > 53,000 [cycles]

Consideration of Braking Time

Total braking time t_{tb} is calculated as the sum of actual braking time t_{ab} , armature release time t_{ar} , and the initial delay time from start of command input to start of operating input t_{id} .

Here, the actual braking time is expected to be greater in the descending direction, so only the case of descending is considered. The sign of the load torque $T\ell$ is minus, since it is in the direction that impedes braking.

$$t_{ab} = \frac{J \times n}{9.55 \times (T_b - T_\ell)}$$

$$t_{ab} = \frac{2.83 \times 10^{-2} \times 1800}{9.55 \times (16.0 - 2.45)}$$

$$\approx 0.39[s]$$

Here, the armature release time t_{ar} of the BXL-12 from the catalog is 0.03 [s]. The initial delay time t_{id} is the delay of the operation of relays and the like, so we use 0.025 [s], the typical relay operation time. Thus, the total braking time t_{tb} is:

$t_{tb} = 0.025 + 0.030 + 0.39$

≒0.445[s]

Consideration of Stopping Precision

When stopping precision (stopping distance) is restricted, calculate stopping precision using the following equations.

$\theta = 6 \times n \times (t_{id} + t_{ar} + 1/2 \times t_{ab})$ $= 2700[^{\circ}]$

The variation in stopping precision--i.e., stopping precision $ightarrow \theta$ --can be found empirically with the following equation and used as a guide.

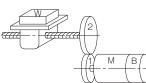
This angle is the angle at the brake shaft, so when the stopping precision θ max is 2700 + 405 = 3105 [°] and the drum diameter Dd is 0.5 [m], the braking distance Bd of load W is:

$B_{d} = \theta \max/360 \times R \times \pi \times D_{d} = (3105/360) \times (60/1800) \times \pi \times 0.5 = 0.45[m]$

If there is no problem with the braking time and stopping precision, BXL-12 can be selected.

EF	RIES
	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
	PRING-ACTUATED RAKE
	LECTROMAGNETIC

SI


BRAKE MOTORS

MODELS	
BXW	
BXR	
BXL	
вхн	
BXL-N	

BXW/BXR/BXL/BXH Models

Selection Example 2

Holding Brakes Used in Ball Screw Drive of Loads

Selection of a brake to brake the load is as follows, as the above figure illustrates.

Motor (brake shaft) rotation speed	n	1800 [min ⁻¹]
Load shaft rotation speed	nı	900 [min ⁻¹]
Moment of inertia of motor	Jм	0.001 [kg·m ²]
Mass of load	М	500 [kg]
Lead of feed screw	Р	0.01 [m]
Shaft diameter of feed screw	D	0.05 [m]
Length of feed screw	I	1 [m]
Friction coefficient of feed screw	μ	0.2

Consideration of Torque

The torque required for holding is calculated from the specifications at left, compared to the static friction torque in the catalog, and the appropriate brake size is selected.

• Calculating load torque converted to brake shaft load torque T ℓ Use the following equation to calculate the load torque T ℓ [N•m]. Here, there is no external force F [N•m], gravitational acceleration g [m/s²] is 9.8 [m/s²], R is the ratio of motor rotation speed to load shaft rotation speed, and η is transmission efficiency, which in this selection is 0.85.

$T \ell = R \times 1/2\pi \times P \times (F + \mu M_g) / \eta [N \cdot m]$

$T_{\ell} = (900/1800) \times 1/2 \pi \times 0.01 \times (0 + 0.2 \times 500 \times 9.8) / 0.85$

≒0.92[N•m]

- Calculating the required holding torque T
- Use the following equation to calculate the required holding torque T. Here, safety factor K is 2.

$T=T_{\ell} \times K[N \cdot m]$ T=0.92×2

≒1.84[N•m]

Since the result of the above shows that required torque is 1.84 [N•m], check the specifications in the catalog and select size 06 (static friction torque of 4.0 [N•m]) of the BXH models of brakes for holding.

Consideration of Energy During Emergency Braking

Brakes selected based on required holding torque are designed primarily for holding, so their braking operations are limited to emergency braking and the like. It is therefore necessary to check that the braking energy per braking operation E_b during emergency braking does not exceed the allowable braking energy $E_{ba\,\ell}$.

Calculating the moment of inertia of feed screws

Given a feed screw whose shaft has a length of 1 [m], diameter of 0.05 [m], and specific gravity of 7.8, the feed screw moment of inertia $J_A [kg\cdot m^2]$ is:

$$J_{A} = \frac{1}{8} \times M \times D^{2}$$
$$= \frac{1}{8} \times (0.025^{2} \times \pi \times 1 \times 7.8 \times 1000) \times 0.05^{2}$$

≒0.0048[kg • m²]

 Calculating the moment of inertia of a linearly moving object Use the following equation to calculate the moment of inertia Jx [kg•m²] of a linearly moving object.

$$J_{x}=J_{A}+\frac{M \cdot P^{2}}{4\pi^{2}}$$

=0.0048+ $\frac{500 \times 0.01^{2}}{4 \times \pi^{2}}$

$= 6.1 \times 10^{-3} [\text{kg} \cdot \text{m}^2]$

Calculating the total inertial moment converted to brake shaft inertial moment

The moment of inertia Jx [kg·m²] of a linearly moving object found above is added to the moment of inertia of the rotating parts of the provisionally selected BXH-06 (catalog value of 3.25×10^{-5} kg·m²) and the motor's moment of inertia JM [kg·m²] to calculate the total moment of inertia. Here, R represents the ratio of the motor rotation speed to the load shaft rotation speed.

$$J=J_{x} \times R^{2} + J_{M} + J_{B}[kg \cdot m^{2}]$$

=6.1×10⁻³× $(\frac{1}{2})^{2}$ + 0.001 + 3.25×10⁻⁵

 $=2.56 \times 10^{-3}$ [kg • m²]

Consideration of energy

We calculate the braking energy per braking Eb required for emergency braking using the following equation. Here, the brake torque T_b [N•m] is the catalog value of 4.0 [N•m] and the sign of the load torque T_{\ell} is plus, since it works in the direction that assists braking.

$$\begin{split} E_{b} &= \frac{J \cdot n^{2}}{182} \times \frac{T_{b}}{T_{b} + T_{\ell}} \\ E_{b} &= \frac{2.56 \times 10^{-3} \times 1800^{2}}{182} \times \frac{4.0}{4.0 + 0.92} \end{split}$$

≒37.1[J]

Since the calculated braking energy E_b does not exceed the BXH-06's allowable braking energy $E_{ba\,\ell}$ (catalog value of 700 [J]), the specification is satisfied.

37.1 [J] < 700 [J]

Consideration of Number of Operations

The total number of braking operations (service life) L when doing emergency braking can be found using the following equation. Here, the BXH-06's total braking energy ET is the catalog value of 2.0×10^6 [J].

≒ 53908 [times]

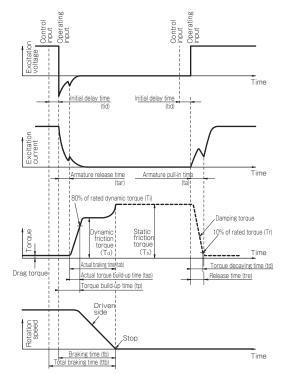
With these specifications, BXH-06 can be selected.

Note that the frequency of emergency braking has a major impact on service life, so it should be about once per minute or better.

ETP BUSHINGS	
ELECTROMAGNETIC	
CLUTCHES & BRAKES	
SPEED CHANGERS	
& REDUCERS	
NVERTERS	
INEAR SHAFT DRIVES	
FORQUE LIMITERS	
ROSTA	

SERIES

ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
ELECTROMAGNETIC CLUTCH & BRAKE UNITS
PRING-ACTUATED RAKE
LECTROMAGNETIC OOTH CLUTCHES


BRAKE MOTORS

MODELS	
BXW	
BXR	
BXL	
вхн	
BXL-N	

BXW/BXR/BXL/BXH Models

Operating Characteristics

Operating Time

BXW Models Unit [s					
Туре	Voltage	Size	Switching	tar	ta
	12V	01		0.015	0.008
	24V	02		0.015	0.008
L type (Braking use)	45V	03	DC side	0.025	0.025
(Draking use)	90V	04		0.030	0.030
	180V	05		0.035	0.035
	12V	01		0.010	0.010
H type	24V	02	DC side	0.010	0.010
(Holding and	45V	03		0.020	0.035
braking use)	90V	04		0.025	0.040
	180V	05		0.030	0.045
		01		0.010	0.025
C hung		02		0.010	0.030
S type (Holding use)	24V	03	DC side	0.020	0.035
(notanig use)		04		0.025	0.040
		05		0.030	0.045
R type		01		0.020	0.035
(For servo	24V	03	DC side	0.020	0.050
motors)		05		0.020	0.060

BXR LE Models (Holding use)

	-		0	Unit [5]
Voltage	Size	Switching	tar	ta
	015		0.020	0.020
	020		0.020	0.035
025	DC side	0.020	0.035	
247	24V 035 DC	DC side	0.020	0.050
	040)	0.020	0.060
	050	0.020	0.060	

Unit [s]

Unit [s]

BXR Models (Holding use)

				01117[5]
Voltage	Size	Switching	tar	ta
	06		0.02	0.05
24V 08 10 12 14		0.02	0.08	
	10	DC side	0.05	0.11
	12		0.03	0.12
	14		0.03	0.12
	16		0.10	0.22

BXL Models (Braking use)

BXL Models (Braking use)						Unit [s]
Voltage	Size	Switching	tar	tap	tp	ta
	06		0.020	0.015	0.035	0.035
24V	08		0.020	0.015	0.035	0.040
45V	10	DC side	0.025	0.020	0.045	0.050
90V	12		0.030	0.025	0.055	0.070
	16		0.035	0.030	0.065	0.100
	06		0.110	0.035	0.145	0.035
(5)(08		0.110	0.040	0.150	0.040
45V 90V	10	AC side	0.150	0.060	0.210	0.050
754	12		0.180	0.095	0.275	0.070
	16		0.180	0.100	0.280	0.100

BXH Models (Holding use)

BXH Models (Holding use)				Unit [s]
Voltage	Size	Switching	tar	ta
24V 45V 90V	06	DC side	0.020	0.040
	08		0.020	0.045
	10		0.025	0.070
	12		0.025	0.090
	16		0.030	0.125
	06	AC side	0.070	0.040
(5)(08		0.080	0.045
45V 90V	10		0.090	0.070
	12		0.120	0.090
	16		0.140	0.125

BXL-N Models (Braking use)

BXL-N Models (Braking use)				Unit [s]
Voltage	Size	Switching	tar	ta
24V 99V 171V	08-10N-002	DC side	0.050	0.030
	08-10N-004		0.040	0.040
	10-10N-008		0.050	0.050
	10-10N-015		0.030	0.070
	12-10N-022		0.060	0.080
	12-10N-030		0.030	0.100
	16-10N-040		0.070	0.100
	16-10N-060		0.050	0.100
	16-10N-080		0.030	0.100

tar: Armature release time

The time from when current shuts off until the armature returns to its position prior to being pulled in and torque begins to be generated

tap: Actual torque build-up time

The time from when torque first begins to be generated until it reaches 80% of rated torque

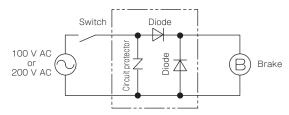
t_P: Torque build-up time

The time from when current flow is shut off until torque reaches 80% of rated torque

ta: Armature pull-in time

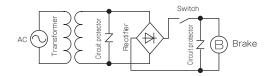
The time from when current flow first starts until the armature is pulled in and torque disappears

tid: Initial delay time


The time from start of command input to actuation input or release input to the main brake body

Control Circuits

45 V, 90 V, and 96 V Specifications for BXW, BXR, BXL, and BXH Models (Single-phase Half-wave Rectified)


AC-side Switching

This is the usual switching method. Connection is simple.

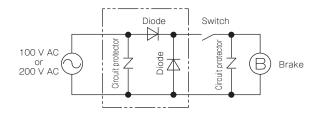
12 V and 24 V Specifications for BXW, BXR, BXL, and BXH Models (Single-phase Full-wave Rectified)

DC-side Switching

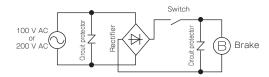
Circuit Protectors

If using a power supply that is not equipped with a circuit protector for DC switching, make sure to connect the recommended circuit protector device in parallel with the brake. However, with some circuit protectors, operation times may lengthen. In such cases, we recommend use of varistors.

Select varistors from the following table based on brake size and AC voltage before rectification.


Note that the 24 V specifications of BXL and BXH as well as all BXR models are supplied with varistors. See Included varistors for each model.

Brake size	Pre-rectification voltage [V]	Recommended varistor model
	AC 30 or below	NVD07SCD082 or an equivalent
01 ~ 18	Over AC 30 to AC 110 or below	NVD07SCD220 or an equivalent
01~18	Over AC 110 to AC 220 or below	NVD07SCD470 or an equivalent
	Over AC 220 to AC 460 or below	NVD14SCD820 or an equivalent
	AC 30 or below	NVD14SCD082 or an equivalent
20 ~ 25	Over AC 30 to AC 110 or below	NVD14SCD220 or an equivalent
20~25	Over AC 110 to AC 220 or below	NVD14SCD470 or an equivalent
	Over AC 220 to AC 460 or below	NVD14SCD820 or an equivalent


* NVD
SCD
parts are manufactured by KOA Corporation.

DC-side Switching

This method achieves even faster operational characteristics than AC-side switching.

- 90 V, 96 V, 180 V, and 190 V Specifications for BXW Models (Single-phase Full-wave Rectified)
 - DC-side Switching

ETP BUSHINGS
ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS & REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA

SERIES

CHESAND BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE
JATED CLUTCHES AV	
	ELECTROMAGNETIC-
ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES

BRAKE MOTORS

MODELS				
BXW				
	• • • •	• • • •	 	
BXR				
BXL				
вхн				
BXL-N				